PUERTO USB.
(bus universal serie) o Conductor Universal en Serie (CUS), abreviado comúnmente USB, es un puerto que sirve para conectar periféricos a una computadora. Fue creado en 1996 por siete empresas: IBM, Intel, Northern Telecom, Compaq, Microsoft, Digital Equipment Corporation y NEC.
Los dispositivos USB se clasifican en cuatro tipos según su velocidad de transferencia de datos:
Baja velocidad (1.0): Tasa de transferencia de hasta 1,5 Mbps (192 KB/s). Utilizado en su mayor parte por dispositivos de interfaz humana (Human interface device, en inglés) como los teclados, los ratones, hornos microondas y artículos del hogar.
Velocidad completa (1.1): Tasa de transferencia de hasta 12 Mbps (1,5 MB/s), según este estándar pero se dice en fuentes independientes que habría que realizar nuevamente las mediciones. Ésta fue la más rápida antes de la especificación USB 2.0, y muchos dispositivos fabricados en la actualidad trabajan a esta velocidad. Estos dispositivos dividen el ancho de banda de la conexión USB entre ellos, basados en un algoritmo de impedancias
ETHERNET
Ethernet es un estándar de redes de computadoras de área local con acceso al medio por contienda CSMA/CDes Acceso Múltiple por Detección de Portadora con Detección de Colisiones"), es una técnica usada en redes Ethernet para mejorar sus prestaciones. El nombre viene del concepto físico de ether. Ethernet define las características de cableado y señalización de nivel físico y los formatos de tramas de datos del nivel de enlace de datos del modelo OSI.
La Ethernet se tomó como base para la redacción del estándar internacional IEEE 802.3. Usualmente se toman Ethernet e IEEE 802.3 como sinónimos. Ambas se diferencian en uno de los campos de la trama de datos. Las tramas Ethernet e IEEE 802.3 pueden coexistir en la misma red.
Tecnología y velocidad de Ethernet
Hace ya mucho tiempo que Ethernet consiguió situarse como el principal protocolo del nivel de enlace. Ethernet 10Base2 consiguió, ya en la década de los 90s, una gran aceptación en el sector. Hoy por hoy, 10Base2 se considera como una "tecnología de legado" respecto a 100BaseT. Hoy los fabricantes ya han desarrollado adaptadores capaces de trabajar tanto con la tecnología 10baseT como la 100BaseT y esto ayuda a una mejor adaptación y transición.
Las tecnologías Ethernet que existen se diferencian en estos conceptos:
Velocidad de transmisión
- Velocidad a la que transmite la tecnología.
Tipo de cable
- Tecnología del nivel físico que usa la tecnología.
Longitud máxima
- Distancia máxima que puede haber entre dos nodos adyacentes (sin estaciones repetidoras).
Topología
- Determina la forma física de la red. Bus si se usan conectores T (hoy sólo usados con las tecnologías más antiguas) y estrella si se usan hubs (estrella de difusión) o switches (estrella conmutada).
TARJETA DE RED
Una tarjeta de red permite la comunicación entre diferentes aparatos conectados entre si y también permite compartir recursos entre dos o más equipos (discos duros, CD-ROM, impresoras, etc). A las tarjetas de red también se les llama adaptador de red o NIC (Network Interface Card, Tarjeta de Interfaz de Red en español). Hay diversos tipos de adaptadores en función del tipo de cableado o arquitectura que se utilice en la red (coaxial fino, coaxial grueso, Token Ring, etc.), pero actualmente el más común es del tipo Ethernet utilizando un interfaz o conector RJ-45.
Características
Una tarjeta de red es un dispositivo electrónico que consta de las siguientes partes:
-Interface de conexión al bus del ordenador.
-Interface de conexión al medio de transmisión.
-Componentes electrónicos internos, propios de la tarjeta.
-Elementos de configuración de la tarjeta: puentes, conmutadores, etc.
CONECTOR RJ-11
Es el conector modular común del teléfono. Es universal en los teléfonos, los módems, los faxes, y artículos similares y utilizado en receptores de la TV vía satélite
FORMA
Tiene una forma rectangular muy parecida a la del conector RJ-45; el cable está compuesto, por un conductor interno que es de alambre eléctrico reconocido, de tipo circular, aislado por una capa de polietileno coloreado.
CARACTERISTICAS
Tiene 4 pines
El conector RJ-11 es más estrecho que el conector RJ-45
Ubicación en el sistema informático:
El conector del módem RJ-11 se encuentra en la parte posterior del ordenador. La ficha RJ-11 es un enchufe modular con 4 pines.
CONECTORES PS/2
Es un conector de clavijas de conexión múltiples, DIN, (acrónimo de Deutsche Industrie Norm) miniatura, su nombre viene del uso que se le daba en los antiguos ordenadores de IBM PS/2 ( PersonalSystem/2). Actualmente los teclados y ratones utilizan este tipo de conector y se supone que en unos años casi todo se conectará al USB, en una cadena de periféricos conectados al mismo cable.
1.El cuerpo del enchufe tiene generalmente una muesca o marca para mostrar donde está la parte que va para "arriba".
2.transmite la información en serie quiere decir que la comunicación con este tipo de conector se realiza sólo en una dirección: o envío, o recepción de datos, pero no las dos al mismo tiempo, ya que envía los datos uno detrás de otro.
FORMA
Su forma es circular, este tipo se llama DIN miniatura ya que posee 6 patas o pines en el panel posterior del equipo.
En esta tabla se puede apreciar la transferencia de información a través del conector del teclado:
Pata
Señal
E/S
Definición
1
KBDATA
E/S
Datos del teclado
2
NC
N/D
No hay conexión
3
GND
N/D
Tierra de señal
4
FVCC
N/D
Voltaje de alimentación con fusible
5
KBCLK
E/S
Reloj de teclado
6
NC
N/D
No hay conexión
Casquete
N/D
N/D
Conexión a tierra del chasis.
CONECTOR HD 15 VGA
Un conector VGA como se le conoce comúnmente (otros nombres incluyen conector RGBHV, D-sub 15, sub mini mini D15 y D15), de tres hileras de 15 pines DE-15. Hay cuatro versiones: original, DDC2, el más antiguo y menos flexible DE-9, y un Mini-VGA utilizados para computadoras portátiles. El conector común de 15 pines se encuentra en la mayoría de las tarjetas de vídeo, monitores de computadoras, y otros dispositivos, es casi universalmente llamado "HD-15". HD es de "alta densidad", que la distingue de los conectores que tienen el mismo factor de forma, pero sólo en 2 filas de pines. Sin embargo, este conector es a menudo erróneamente denominado DB-15 o HDB-15. Los conectores VGA y su correspondiente cableado casi siempre son utilizados exclusivamente para transportar componentes analógicos RGBHV (rojo - verde - azul - sincronización horizontal - sincronización vertical), junto con señales de vídeo DDC2 reloj digital y datos. En caso de que el tamaño sea una limitación (como portátiles) un puerto mini-VGA puede figurar en ocasiones en lugar de las de tamaño completo conector VGA.
SVGA
Super Video Graphics Array, también conocida como SVGA o Super VGA, es un término que cubre una amplia gama de estándares de visualización gráfica de ordenadores, incluyendo tarjetas de video y monitores.
Puerto D-sub de 15 pines.Cuando IBM lanzara al mercado el estándar VGA en 1987 muchos fabricantes manufacturan tarjetas VGA clones. Luego, IBM se mueve y crea el estándar XGA, el cual no es seguido por las demás compañías, éstas comienzan a crear tarjetas gráficas SVGA.
Las nuevas tarjetas SVGA de diferentes fabricantes no eran exactamente igual a nivel de hardware, lo que las hacía incompatibles. Los programas tenían dos alternativas: Manejar la tarjeta de vídeo a través de llamadas estándar, lo cual era muy lento pero había compatibilidad con las diferentes tarjetas, o manejar la tarjeta directamente, lo cual era muy rápido y se podía acceder a toda la funcionalidad de ésta (modos gráficos, etc), sin embargo, el programador tenía que hacer una rutina de acceso especial para cada tipo de tarjeta.
Mientras que la salida de VGA o SVGA es analógica, los cálculos internos que la tarjeta de vídeo realiza para proporcionar estos voltajes de salida son enteramente digitales. Para aumentar el número de colores que un sistema de visualización SVGA puede producir, no se precisa ningún cambio en el monitor, pero la tarjeta vídeo necesita manejar números mucho más grandes y puede ser necesario rediseñarla desde el principio. Debido a esto, los principales fabricantes de chips gráficos empezaron a producir componentes para tarjetas vídeo del alta densidad de color apenas unos meses después de la aparición de SVGA.
Sobre el papel, el SVGA original debía ser sustituido por el estándar XGA o SXGA, pero la industria pronto abandonó el plan de dar un nombre único a cada estándar superior y así, casi todos los sistemas de visualización hechos desde finales de los 80 hasta la actualidad se denominan SVGA.
Los fabricantes de monitores anuncian a veces sus productos como XGA o SXGA, pero esto no tiene ningún significado, ya que la mayoría de los monitores SVGA fabricados desde los años 90 llegan y superan ampliamente el rendimiento de XGA o SXGA.
RS-232
RS-232 (Recommended Standard 232, también conocido como Electronic Industries Alliance RS-232C) es una interfaz que designa una norma para el intercambio serie de datos binarios entre un DTE (Equipo terminal de datos) y un DCE (Data Communication Equipment, Equipo de Comunicación de datos), aunque existen otras en las que también se utiliza la interfaz RS-232.
Conector RS-232 (DE-9 hembra).En particular, existen ocasiones en que interesa conectar otro tipo de equipamientos, como pueden ser computadores. Evidentemente, en el caso de interconexión entre los mismos, se requerirá la conexión de un DTE (Data Terminal Equipment) con otro DTE. Para ello se utiliza una conexión entre los dos DTE sin usar modem, por ello se llama: null modem ó modem nulo.
El RS-232 consiste en un conector tipo DB-25 (de 25 pines), aunque es normal encontrar la versión de 9 pines (DE-9), más barato e incluso más extendido para cierto tipo de periféricos (como el ratón serie del PC).
PARALLEL PORT
Un puerto paralelo es un tipo de interfaz se encuentran en las computadoras ( personales y de otro tipo) para conectar varios periféricos. In computing , a parallel port is a parallel communication physical interface. En computación , un puerto paralelo es una comunicación paralela interfaz física. It is also known as a printer port or Centronics port . También es conocido como un puerto de impresora o del puerto Centronics . The IEEE 1284 standard defines the bi-directional version of the port. El IEEE 1284 estándar define la versión bi-direccional del puerto. This transmits particular amount of bits in parallel at the same time. Esto transmite determinada cantidad de bits en paralelo, al mismo tiempo. This is opposite to serial transition where one bit will be transmitted at a time. Esto es lo opuesto a la serie de transición donde se transmite un bit a la vez.
HDMI
es una de las palabras que más se usan en la actualidad cuando hablamos de televisores, equipos reproductores y ya incluso con pantallas de ordenador o los mismos equipos informáticos. Está empezando a formar parte de nuestro vocabulario común, como ya son otras siglas como USB o FulHD. Pero, ¿qué es realmente el HDMI? ¿Para qué vale? ¿Qué ventajas encierra ese conector y cable? En este especial vamos a tratar de daros las respuestas a esas preguntas y algunas más de una manera sencilla pero completa.
significa High-Definition Multi-media Interface (Interfaz multimedia de alta definición), es una norma para transmitir audio y vídeo digital sin comprimir de un equipo a otro. Sería la versión digital y con protección de los derechos de autor, del euroconector. Por lo tanto, con el HDMI no necesitamos dos cables para conectar dos equipos con ese tipo de conexión. Con un solo cable es suficiente para transportar vídeo en alta definición (pero también vídeo estándar) y audio digital multicanal, además de señales del mando a distancia.
miércoles, 12 de mayo de 2010
14.LA PLACA BASE
LA PLACA BASE
Es una tarjeta de circuito impreso a la que se conectan las demás partes de la computadora. Tiene instalados una serie de integrados, entre los que se encuentra el chipset, que sirve como centro de conexión entre el procesador, la memoria RAM, los buses de expansión y otros dispositivos. Va instalada dentro de una caja que por lo general está hecho de chapa y tiene un panel para conectar dispositivos externos y muchos conectores internos y zócalos para instalar componentes dentro de la caja.
COMPONENTES DE LA PLACA BASE
Una placa base típica admite los siguientes componentes:
Uno o varios conectores de alimentación: por estos conectores, una alimentación eléctrica proporciona a la placa base los diferentes voltajes necesarios para su funcionamiento.
El zócalo de CPU (a menudo llamado socket): es un receptáculo que recibe el micro-procesador y lo conecta con el resto de la microcomputadora.
Los conectores de memoria RAM (ranura de memoria, en inglés memory slot), en número de 2, 3 o 4 en las placas base comunes, e incluso 6.
El chipset: uno o más circuitos electrónicos, que gestiona las transferencias de datos entre los diferentes componentes de la computadora (microprocesador, memoria, disco duro, etc.).
Un reloj: regula la velocidad de ejecución de las instrucciones del microprocesador y de los periféricos internos.
La CMOS: una pequeña memoria que preserva cierta información importante (como la configuración del equipo, fecha y hora), mientras el equipo no está alimentado por electricidad.
La pila de la CMOS: proporciona la electricidad necesaria para operar el circuito.
La BIOS: un programa registrado en una memoria no volátil (antiguamente en memorias ROM, pero desde hace tiempo se emplean memorias flash). Este programa es específico de la tarjeta y se encarga de la interfaz de bajo nivel entre el microprocesador y algunos periféricos. Recupera, y después ejecuta, las instrucciones del MBR (Master Boot Record), registradas en un disco duro, cuando arranca el equipo.
El bus (también llamado bus interno o en inglés (Front Side Bus (FSB)): conecta el microprocesador al chipset.
El bus de memoria conecta el chipset a la memoria temporal. El bus de expansión (también llamado bus I/O): une el microprocesador a los conectores entrada/salida y a las ranuras de expansión.
Los conectores de entrada/salida que cumplen normalmente con la norma PC 99: estos conectores incluyen:
Los puertos serie, por ejemplo para conectar dispositivos antiguos.
Los puertos paralelos, por ejemplo para la conexión de antiguas impresoras. Los puertos USB (en inglés Universal Serial Bus), por ejemplo para conectar periféricos recientes. Los conectores RJ45, para conectarse a una red informática.
Los conectores VGA, para la conexión del monitor de la computadora. Los conectores IDE o Serial ATA I o II, para conectar dispositivos de almacenamiento, tales como discos duros y discos ópticos.
Los conectores de audio, para conectar dispositivos de audio, tales como altavoces o micrófono.
Los conectores (slots) de expansión: se trata de receptáculos que pueden acoger tarjetas de expansión (estas tarjetas se utilizan para agregar características o aumentar el rendimiento de un ordenador; por ejemplo, un tarjeta gráfica se puede añadir a un ordenador para mejorar el rendimiento 3D en el monitor). Estos puertos pueden ser puertos ISA (interfaz antigua), PCI (en inglés Peripheral Component Interconnect) y, los más recientes, PCI Express.
Con la evolución de las computadoras, más y más características se han integrado en la placa base, tales como circuitos electrónicos para la gestión del vídeo IGP (en inglés Integrated Graphic Processor), de sonido o de redes (10/100 Mbps/1 Gbps), evitando así la adición de tarjetas de expansión.
EL BUS
Es un sistema digital que transfiere datos entre los componentes de un ordenador o entre ordenadores. Está formado por cables o pistas en un circuito impreso, dispositivos como resistencias y condensadores además de circuitos integrados. En los primeros computadores electrónicos, todos los buses eran de tipo paralelo, de manera que la comunicación entre las partes de computador se hacía por medio de cintas o muchas pistas en el circuito impreso, en los cuales cada conductor tiene una función fija y la conexión es sencilla requiriendo únicamente puertos de entrada y de salida para cada dispositivo.
• Bus de datos: son las líneas de comunicación por donde circulan los datos externos e internos del microprocesador.
• Bus de dirección: línea de comunicación por donde viaja la información específica sobre la localización de la dirección de memoria del dato o dispositivo al que se hace referencia.
• Bus de control: línea de comunicación por donde se controla el intercambio de información con un módulo de la unidad central y los periféricos.
• Bus de expansión: conjunto de líneas de comunicación encargado de llevar el bus de datos, el bus de dirección y el de control a la tarjeta de interfaz (entrada, salida) que se agrega a la tarjeta principal.
• Bus del sistema: todos los componentes de la CPU se vinculan a través del bus de sistema, mediante distintos tipos de datos el microprocesador y la memoria principal, que también involucra a la memoria caché de nivel 2. La velocidad de tranferencia del bus de sistema está determinada por la frecuencia del bus y el ancho del mínimo
TIPOS DE PLACAS…
La mayoría de las placas de PC vendidas después de 2001 se pueden clasificar en dos grupos:
LAS PLACAS BASE PARA PROCESADORES AMD: Advanced Micro Devices, Inc. (AMD) es una de las compañías mas grandes del mundo en producción de microprocesadores compatibles x86 (junto a Intel) y uno de los más importantes fabricantes de CPUs, GPUs, chipsets y otros dispositivos semiconductores. Fue fundada en 1969 y su central está situada en Sunnyvale, California.
o Slot A Duron, Athlon
o Socket A Duron, Athlon, Athlon XP, Sempron
o Socket 754 Athlon 64, Mobile Athlon 64, Sempron, Turion
o Socket 939 Athlon 64, Athlon FX , Athlon X2, Sempron, Opteron
o Socket 940 Opteron y Athlon 64 FX
o Socket AM2 Athlon 64, Athlon FX, Athlon X2, Sempron, Phenom
o Socket F Opteron
o SOCKET AM3.
LAS PLACAS BASE PARA PROCESADORES INTEL : Intel Corporation es el más grande fabricante de chips semiconductores basado en ingresos.1 La compañía es la creadora de la serie de procesadores x86, los procesadores mas conunmente encontrados en la mayoría de las computadoras personales. Intel fue fundada el 18 de júlio de 1968 como Integrated Electronics Corporation (aunque un error común es el de que "Intel" viene de la palabra intelligence) por los pioneros en semiconductores Robert Noyce y Gordon Moore, y muchas veces asociado con la dirección ejecutiva y la visión de Andrew Grove.
o Slot 1: Pentium 3, Celeron
o Socket 370: Pentium 3, Celeron
o Socket 423: Pentium 4, Celeron
o Socket 478: Pentium 4, Celeron
o Socket 775: Pentium 4, Celeron, Pentium D (doble núcleo), Core 2 Duo, Core 2 Quad
o LGA1366 Intel Core i7
FORMATOS DE FORMA
Las tarjetas madre necesitan tener dimensiones compatibles con las cajas que las contienen, de manera que desde los primeros computadores personales se han establecido características mecánicas, llamadas factor de forma. Definen la distribución de diversos componentes y las dimensiones físicas, como por ejemplo el largo y ancho de la tarjeta, la posición de agujeros de sujeción y las características de los conectores.
XT: es el formato de la placa base del PC de IBM modelo 5160, lanzado en 1983. En este factor de forma se definió un tamaño exactamente igual al de una hoja de papel tamaño carta y un único conector externo para el teclado.
AT: uno de los formatos más grandes de toda la historia del PC (305 × 279–330 mm), definió un conector de potencia formado por dos partes. Fue usado de manera extensa de 1985 a 1995.
1984 AT 305 × 305 mm ( IBM)
Baby AT: 216 × 330 mm
ATX: creado por un grupo liderado por Intel, en 1995 introdujo las conexiones exteriores en la forma de un panel I/O y definió un conector de 20 pines para la energía. Se usa en la actualidad en la forma de algunas variantes, que incluyen conectores de energía extra o reducciones en el tamaño. 1995 ATX 305 × 244 mm (Intel)
o MicroATX: 244 × 244 mm
o FlexATX: 229 × 191 mm
o MiniATX: 284 × 208 mm
Mega mon: es un placa base de dimensiones de 900 x 700cm que tiene unas capacidades increíbles, nunca vistas en una placa madre.
ITX: con rasgos procedentes de las especificaciones microATX y FlexATX de Intel, el diseño de
VIA se centra en la integración en placa base del mayor número posible de componentes, además de la inclusión del hardware gráfico en el propio chipset del equipo, siendo innecesaria la instalación de una tarjeta gráfica en la ranura AGP .2001 ITX 215 × 195 mm ( VIA)
o MiniITX: 170 × 170 mm
o NanoITX: 120 × 120 mm
o PicoITX: 100 × 72 mm
BTX: retirada en muy poco tiempo por la falta de aceptación, resultó prácticamente incompatible con ATX, salvo en la fuente de alimentación. Fue creada para intentar solventar los problemas de ruido y refrigeración, como evolución de la ATX. 2005 BTX 325 × 267 mm (Intel)
o Micro bTX: 264 × 267 mm
o PicoBTX: 203 × 267 mm
o RegularBTX: 325 × 267 mm
DTX: destinadas a PCs de pequeño formato. Hacen uso de un conector de energía de 24 pines y de un conector adicional de 2x2.
• 2007 DTX 248 × 203 mm ( AMD)
o Mini-DTX: 170 × 203 mm
o Full-DTX: 243 × 203 mm
DTX: destinadas a PCs de pequeño formato. Hacen uso de un conector de energía de 24 pines y de un conector adicional de 2x2.
• 2007 DTX 248 × 203 mm ( AMD)
o Mini-DTX: 170 × 203 mm
o Full-DTX: 243 × 203 mm
• Formato propietario: durante la existencia del PC, mucha marcas han intentado mantener un esquema cerrado de hardware, fabricando tarjetas madre incompatibles físicamente con los factores de forma con dimensiones, distribución de elementos o conectores que son atípicos. Entre las marcas mas persistentes está Dell, que rara vez fabrica equipos diseñados con factores de forma de la industria.
Es una tarjeta de circuito impreso a la que se conectan las demás partes de la computadora. Tiene instalados una serie de integrados, entre los que se encuentra el chipset, que sirve como centro de conexión entre el procesador, la memoria RAM, los buses de expansión y otros dispositivos. Va instalada dentro de una caja que por lo general está hecho de chapa y tiene un panel para conectar dispositivos externos y muchos conectores internos y zócalos para instalar componentes dentro de la caja.
COMPONENTES DE LA PLACA BASE
Una placa base típica admite los siguientes componentes:
Uno o varios conectores de alimentación: por estos conectores, una alimentación eléctrica proporciona a la placa base los diferentes voltajes necesarios para su funcionamiento.
El zócalo de CPU (a menudo llamado socket): es un receptáculo que recibe el micro-procesador y lo conecta con el resto de la microcomputadora.
Los conectores de memoria RAM (ranura de memoria, en inglés memory slot), en número de 2, 3 o 4 en las placas base comunes, e incluso 6.
El chipset: uno o más circuitos electrónicos, que gestiona las transferencias de datos entre los diferentes componentes de la computadora (microprocesador, memoria, disco duro, etc.).
Un reloj: regula la velocidad de ejecución de las instrucciones del microprocesador y de los periféricos internos.
La CMOS: una pequeña memoria que preserva cierta información importante (como la configuración del equipo, fecha y hora), mientras el equipo no está alimentado por electricidad.
La pila de la CMOS: proporciona la electricidad necesaria para operar el circuito.
La BIOS: un programa registrado en una memoria no volátil (antiguamente en memorias ROM, pero desde hace tiempo se emplean memorias flash). Este programa es específico de la tarjeta y se encarga de la interfaz de bajo nivel entre el microprocesador y algunos periféricos. Recupera, y después ejecuta, las instrucciones del MBR (Master Boot Record), registradas en un disco duro, cuando arranca el equipo.
El bus (también llamado bus interno o en inglés (Front Side Bus (FSB)): conecta el microprocesador al chipset.
El bus de memoria conecta el chipset a la memoria temporal. El bus de expansión (también llamado bus I/O): une el microprocesador a los conectores entrada/salida y a las ranuras de expansión.
Los conectores de entrada/salida que cumplen normalmente con la norma PC 99: estos conectores incluyen:
Los puertos serie, por ejemplo para conectar dispositivos antiguos.
Los puertos paralelos, por ejemplo para la conexión de antiguas impresoras. Los puertos USB (en inglés Universal Serial Bus), por ejemplo para conectar periféricos recientes. Los conectores RJ45, para conectarse a una red informática.
Los conectores VGA, para la conexión del monitor de la computadora. Los conectores IDE o Serial ATA I o II, para conectar dispositivos de almacenamiento, tales como discos duros y discos ópticos.
Los conectores de audio, para conectar dispositivos de audio, tales como altavoces o micrófono.
Los conectores (slots) de expansión: se trata de receptáculos que pueden acoger tarjetas de expansión (estas tarjetas se utilizan para agregar características o aumentar el rendimiento de un ordenador; por ejemplo, un tarjeta gráfica se puede añadir a un ordenador para mejorar el rendimiento 3D en el monitor). Estos puertos pueden ser puertos ISA (interfaz antigua), PCI (en inglés Peripheral Component Interconnect) y, los más recientes, PCI Express.
Con la evolución de las computadoras, más y más características se han integrado en la placa base, tales como circuitos electrónicos para la gestión del vídeo IGP (en inglés Integrated Graphic Processor), de sonido o de redes (10/100 Mbps/1 Gbps), evitando así la adición de tarjetas de expansión.
EL BUS
Es un sistema digital que transfiere datos entre los componentes de un ordenador o entre ordenadores. Está formado por cables o pistas en un circuito impreso, dispositivos como resistencias y condensadores además de circuitos integrados. En los primeros computadores electrónicos, todos los buses eran de tipo paralelo, de manera que la comunicación entre las partes de computador se hacía por medio de cintas o muchas pistas en el circuito impreso, en los cuales cada conductor tiene una función fija y la conexión es sencilla requiriendo únicamente puertos de entrada y de salida para cada dispositivo.
• Bus de datos: son las líneas de comunicación por donde circulan los datos externos e internos del microprocesador.
• Bus de dirección: línea de comunicación por donde viaja la información específica sobre la localización de la dirección de memoria del dato o dispositivo al que se hace referencia.
• Bus de control: línea de comunicación por donde se controla el intercambio de información con un módulo de la unidad central y los periféricos.
• Bus de expansión: conjunto de líneas de comunicación encargado de llevar el bus de datos, el bus de dirección y el de control a la tarjeta de interfaz (entrada, salida) que se agrega a la tarjeta principal.
• Bus del sistema: todos los componentes de la CPU se vinculan a través del bus de sistema, mediante distintos tipos de datos el microprocesador y la memoria principal, que también involucra a la memoria caché de nivel 2. La velocidad de tranferencia del bus de sistema está determinada por la frecuencia del bus y el ancho del mínimo
TIPOS DE PLACAS…
La mayoría de las placas de PC vendidas después de 2001 se pueden clasificar en dos grupos:
LAS PLACAS BASE PARA PROCESADORES AMD: Advanced Micro Devices, Inc. (AMD) es una de las compañías mas grandes del mundo en producción de microprocesadores compatibles x86 (junto a Intel) y uno de los más importantes fabricantes de CPUs, GPUs, chipsets y otros dispositivos semiconductores. Fue fundada en 1969 y su central está situada en Sunnyvale, California.
o Slot A Duron, Athlon
o Socket A Duron, Athlon, Athlon XP, Sempron
o Socket 754 Athlon 64, Mobile Athlon 64, Sempron, Turion
o Socket 939 Athlon 64, Athlon FX , Athlon X2, Sempron, Opteron
o Socket 940 Opteron y Athlon 64 FX
o Socket AM2 Athlon 64, Athlon FX, Athlon X2, Sempron, Phenom
o Socket F Opteron
o SOCKET AM3.
LAS PLACAS BASE PARA PROCESADORES INTEL : Intel Corporation es el más grande fabricante de chips semiconductores basado en ingresos.1 La compañía es la creadora de la serie de procesadores x86, los procesadores mas conunmente encontrados en la mayoría de las computadoras personales. Intel fue fundada el 18 de júlio de 1968 como Integrated Electronics Corporation (aunque un error común es el de que "Intel" viene de la palabra intelligence) por los pioneros en semiconductores Robert Noyce y Gordon Moore, y muchas veces asociado con la dirección ejecutiva y la visión de Andrew Grove.
o Slot 1: Pentium 3, Celeron
o Socket 370: Pentium 3, Celeron
o Socket 423: Pentium 4, Celeron
o Socket 478: Pentium 4, Celeron
o Socket 775: Pentium 4, Celeron, Pentium D (doble núcleo), Core 2 Duo, Core 2 Quad
o LGA1366 Intel Core i7
FORMATOS DE FORMA
Las tarjetas madre necesitan tener dimensiones compatibles con las cajas que las contienen, de manera que desde los primeros computadores personales se han establecido características mecánicas, llamadas factor de forma. Definen la distribución de diversos componentes y las dimensiones físicas, como por ejemplo el largo y ancho de la tarjeta, la posición de agujeros de sujeción y las características de los conectores.
XT: es el formato de la placa base del PC de IBM modelo 5160, lanzado en 1983. En este factor de forma se definió un tamaño exactamente igual al de una hoja de papel tamaño carta y un único conector externo para el teclado.
AT: uno de los formatos más grandes de toda la historia del PC (305 × 279–330 mm), definió un conector de potencia formado por dos partes. Fue usado de manera extensa de 1985 a 1995.
1984 AT 305 × 305 mm ( IBM)
Baby AT: 216 × 330 mm
ATX: creado por un grupo liderado por Intel, en 1995 introdujo las conexiones exteriores en la forma de un panel I/O y definió un conector de 20 pines para la energía. Se usa en la actualidad en la forma de algunas variantes, que incluyen conectores de energía extra o reducciones en el tamaño. 1995 ATX 305 × 244 mm (Intel)
o MicroATX: 244 × 244 mm
o FlexATX: 229 × 191 mm
o MiniATX: 284 × 208 mm
Mega mon: es un placa base de dimensiones de 900 x 700cm que tiene unas capacidades increíbles, nunca vistas en una placa madre.
ITX: con rasgos procedentes de las especificaciones microATX y FlexATX de Intel, el diseño de
VIA se centra en la integración en placa base del mayor número posible de componentes, además de la inclusión del hardware gráfico en el propio chipset del equipo, siendo innecesaria la instalación de una tarjeta gráfica en la ranura AGP .2001 ITX 215 × 195 mm ( VIA)
o MiniITX: 170 × 170 mm
o NanoITX: 120 × 120 mm
o PicoITX: 100 × 72 mm
BTX: retirada en muy poco tiempo por la falta de aceptación, resultó prácticamente incompatible con ATX, salvo en la fuente de alimentación. Fue creada para intentar solventar los problemas de ruido y refrigeración, como evolución de la ATX. 2005 BTX 325 × 267 mm (Intel)
o Micro bTX: 264 × 267 mm
o PicoBTX: 203 × 267 mm
o RegularBTX: 325 × 267 mm
DTX: destinadas a PCs de pequeño formato. Hacen uso de un conector de energía de 24 pines y de un conector adicional de 2x2.
• 2007 DTX 248 × 203 mm ( AMD)
o Mini-DTX: 170 × 203 mm
o Full-DTX: 243 × 203 mm
DTX: destinadas a PCs de pequeño formato. Hacen uso de un conector de energía de 24 pines y de un conector adicional de 2x2.
• 2007 DTX 248 × 203 mm ( AMD)
o Mini-DTX: 170 × 203 mm
o Full-DTX: 243 × 203 mm
• Formato propietario: durante la existencia del PC, mucha marcas han intentado mantener un esquema cerrado de hardware, fabricando tarjetas madre incompatibles físicamente con los factores de forma con dimensiones, distribución de elementos o conectores que son atípicos. Entre las marcas mas persistentes está Dell, que rara vez fabrica equipos diseñados con factores de forma de la industria.
12-13.MONITOR LCD Y MONITOR CRT
MONITOR LCD
Una pantalla de cristal líquido o LCD es una pantalla delgada y plana formada por un número de píxeles en color o monocromos colocados delante de una fuente de luz o reflectora. A menudo se utiliza en dispositivos electrónicos de pilas, ya que utiliza cantidades muy pequeñas de energía eléctrica.
COMO FUNCIONA UN LCD
La tecnología LCD utiliza moléculas de cristal líquido colocadas entre diferentes capas que los polarizan y los rotan según si se quiere mostrar un color u otro. Su principal ventaja, además de su reducido tamano, es el ahorro de energía.
Cuando las moléculas en la red cristalina giran, cambian el ángulo de polarización de la luz que pasa por estas, de manera que parte de la misma es reflejada y parte es transmitida. Lo que se traduce en una reducción de la intensidad de la luz que traspasa el cristal. Los LCDs necesitan una fuente externa de luz, ya que los mismos no son capaces de emitirla.
En las pantallas de computadora o de mayor tamano se usan LCDs de matriz pasiva y de matriz activa. En el primer caso, se hace pasar corriente eléctrica a través de una malla de conductores arriba y debajo de la placa de cristal líquido. De esta forma, en el punto donde se encuentran las cargas eléctricas, el pequeno cristal líquido se “destuerce”, permitiendo el paso de la luz que viene del fondo. Las pantallas LCD de matriz activa poseen transistores y capacitores para cada punto o píxel, lo que facilita un mayor control de qué cristal líquido se activa y cuál no, además de mayor precisión en el grado de polarización de cada cristal, llegando hasta 256 grados de brillantez por píxel.
MONITOR CRT
Es un dispositivo de visualización inventado por William Crookes en 1875. Se emplea principalmente en monitores, televisiones y osciloscopios, aunque en la actualidad se están sustituyendo paulatinamente por tecnologías como plasma, LCD, DLP; debido al menor consumo energético de estos últimos.
FUNCIONAMIENTO
En la parte trasera del tubo encontramos la rejilla catódica, que envía electrones a la superficie interna del tubo. Estos electrones al estrellarse sobre el fósforo hacen que este se ilumine. Un CRT es básicamente un tubo vacío con un cátodo (el emisor de luz electrónico y un ánodo (la pantalla recubierta de fósforo) que permiten a los electrones viajar desde el terminal negativo al positivo.
Su técnica se basa en dibujar los píxeles a través de la emisión de un haz que incide sobre la capa partículas dispuesta en la parte interna de la pantalla
Una pantalla de cristal líquido o LCD es una pantalla delgada y plana formada por un número de píxeles en color o monocromos colocados delante de una fuente de luz o reflectora. A menudo se utiliza en dispositivos electrónicos de pilas, ya que utiliza cantidades muy pequeñas de energía eléctrica.
COMO FUNCIONA UN LCD
La tecnología LCD utiliza moléculas de cristal líquido colocadas entre diferentes capas que los polarizan y los rotan según si se quiere mostrar un color u otro. Su principal ventaja, además de su reducido tamano, es el ahorro de energía.
Cuando las moléculas en la red cristalina giran, cambian el ángulo de polarización de la luz que pasa por estas, de manera que parte de la misma es reflejada y parte es transmitida. Lo que se traduce en una reducción de la intensidad de la luz que traspasa el cristal. Los LCDs necesitan una fuente externa de luz, ya que los mismos no son capaces de emitirla.
En las pantallas de computadora o de mayor tamano se usan LCDs de matriz pasiva y de matriz activa. En el primer caso, se hace pasar corriente eléctrica a través de una malla de conductores arriba y debajo de la placa de cristal líquido. De esta forma, en el punto donde se encuentran las cargas eléctricas, el pequeno cristal líquido se “destuerce”, permitiendo el paso de la luz que viene del fondo. Las pantallas LCD de matriz activa poseen transistores y capacitores para cada punto o píxel, lo que facilita un mayor control de qué cristal líquido se activa y cuál no, además de mayor precisión en el grado de polarización de cada cristal, llegando hasta 256 grados de brillantez por píxel.
MONITOR CRT
Es un dispositivo de visualización inventado por William Crookes en 1875. Se emplea principalmente en monitores, televisiones y osciloscopios, aunque en la actualidad se están sustituyendo paulatinamente por tecnologías como plasma, LCD, DLP; debido al menor consumo energético de estos últimos.
FUNCIONAMIENTO
En la parte trasera del tubo encontramos la rejilla catódica, que envía electrones a la superficie interna del tubo. Estos electrones al estrellarse sobre el fósforo hacen que este se ilumine. Un CRT es básicamente un tubo vacío con un cátodo (el emisor de luz electrónico y un ánodo (la pantalla recubierta de fósforo) que permiten a los electrones viajar desde el terminal negativo al positivo.
Su técnica se basa en dibujar los píxeles a través de la emisión de un haz que incide sobre la capa partículas dispuesta en la parte interna de la pantalla
11.IMPRESORAS
IMPRESORA DE LASER
Es un tipo de impresora que permite imprimir texto o gráficos, tanto en negro como en color, con gran calidad.
El dispositivo de impresión consta de un tambor fotoconductor unido a un depósito de tóner y un haz láser que es modulado y proyectado a través de un disco especular hacia el tambor fotoconductor. El giro del disco provoca un barrido del haz sobre la generatriz del tambor. Las zonas del tambor sobre las que incide el haz quedan ionizadas y, cuando esas zonas (mediante el giro del tambor) pasan por el depósito del tóner atraen el polvo ionizado de éste. Posteriormente el tambor entra en contacto con el papel, impregnando de polvo las zonas correspondientes. Para finalizar se fija la tinta al papel mediante una doble acción de presión y calor.
FUNCIONAMIENTO DE LAS IMPRESORAS LASER
La impresión láser se basa enteramente en la interacción electrostática, el mismo fenómeno que produce que un plástico atraiga trozos de papel tras ser frotado con una prenda de fibra.
Para comprender la impresión electrostática, basta saber que las cargas eléctricas pueden ser positivas o negativas, y que las cargas de signo opuesto se atraen, mientras que las cargas de igual signo se repelen.
En primer lugar, se carga negativamente toda la superficie de un tambor fotosensible, del tamaño de una hoja. Acto seguido, se hace avanzar el tambor línea a línea, y un láser recorre horizontalmente cada línea, ayudado por un espejo giratorio (en otras palabras, se produce un proceso de barrido). El láser incide en los puntos donde la tinta se deberá fijar, invirtiendo la carga (que ahora será positiva). El láser se desconecta en los lugares donde no deberá aparecer tinta (quedando con carga negativa). Por tanto, tras recorrer todo el tambor, solo habrá cargas positivas en los puntos donde deberá depositarse tinta, mientras que el resto (lo que constituirá el fondo blanco del papel) queda cargado negativamente. En otras palabras, se ha conseguido crear una imagen electrostática de la hoja a imprimir, mediante cargas positivas sobre un fondo de cargas negativas.
Puntos cargados positivamente
Los puntos cargados positivamente en el tambor atraen partículas de tóner (material electronegativo mezclado con un pigmento que lo dota de color). Por tanto, la imagen final queda "dibujada" sobre el tambor por medio de puntos negros de tóner.
El papel a imprimir se carga positivamente en su totalidad. Por tanto, al hacerlo pasar por el tambor, atraerá a las partículas de tóner (que tienen carga negativa), y la imagen quedará finalmente formada sobre papel. Finalmente, el tóner adherido al papel se funde mediante la aplicación de calor, haciendo que quede totalmente fijado al papel. Se consigue así imprimir una página en una sola pasada, al contrario que en las impresoras de inyección de tinta, donde la página se imprime línea a línea. Antes de imprimir una nueva página, se realiza un borrado electrostático del tambor, dejándolo preparado para un nuevo ciclo.
Impresoras con diodos emisores de luz
Existe otra variante de las impresoras láser en las que no es necesario un proceso de barrido. En lugar de un láser y un sistema de espejos se dispone de una hilera de diodos emisores de luz (Láser-LED). Por ejemplo, en una impresora de 300 ppp, habrá una hilera de LED cubriendo una línea completa del papel, a razón de 300 LED por pulgada. Sólo se encienden, para cada línea, aquellos diodos que corresponden a puntos donde deberá aplicarse tóner. Este proceso se repite línea a línea hasta procesar el tambor completo. Se produce el mismo efecto que con un barrido láser, pero de forma más rápida.
Tecnología con diodos de cristal líquido
Otra variante emplea diodos de cristal líquido (LCD) en lugar de LED. Estos conforman un material que es transparente u opaco según el nivel de tensión eléctrica que se le aplica. Se forzarán al estado transparente aquellos cristales correspondientes a los puntos donde deba aplicarse tóner, manteniendo el resto de diodos en estado opaco. Por otra parte, se aplica una lámpara halógena que ilumina todos los cristales, y sólo pasa luz a través de los diodos en estado transparente, invirtiendo la carga en el tambor.
Ventajas e inconvenientes de la impresión láser
Las impresoras láser son mucho más rápidas que las impresoras de inyección de tinta. Además, están dotadas de una mayor precisión en la colocación de puntos sobre el papel. También economizan tinta, ya que depositan la cantidad de tóner necesaria, sin exceder ese límite. El tóner no es caro en comparación con los cartuchos de tinta y, además, es mucho más duradero, lo que resulta rentable en el entorno de una oficina, donde se imprimen gran cantidad de documentos diariamente. Como desventaja principal, el precio de estas impresoras es muy elevado en comparación con las impresoras de inyección de tinta.
IMPRESORA DE MATRIZ DE PUNTO
Una impresora es un periférico de ordenador que permite producir una copia permanente de textos o gráficos de documentos almacenados en formato electrónico, imprimiéndolos en medios físicos, normalmente en papel o transparencias, utilizando cartuchos de tinta o tecnología láser. Muchas impresoras son usadas como periféricos, y están permanentemente unidas al ordenador por un cable. Otras impresoras, llamadas impresoras de red, tienen un interfaz de red interno (típicamente wireless o Ethernet), y que puede servir como un dispositivo para imprimir en papel algún documento para cualquier usuario de la red.
IMPRESORA DE MATRIZ DE PUNTO FUNCIONAN
haciendo avanzan el papel verticalmente, una línea a la vez, alrededor de un rodillo de hule. Al mismo tiempo, una cabeza de impresión viaja en forma horizontal sobre una varilla de metal de un lado al otro. La cabeza de impresión contiene una matriz de agujas metálicas (pon lo regular 9 o 24) que se extiende en varias combinaciones para realizar la impresión física sobre el papel. Entre las agujas y el papel hay una cinta entintada, muy similar a la que se usa en una máquina de escribir. Las agujas presionan a través de la cinta sobre la página para hacer una serie de puntos pequeños, formando caracteres sobre la página. Las impresoras de matriz de puntos tienen capacidades gráficas rudimentarias, las cuales les permiten producir solamente mapas de bits de baja resolución, utilizando su memoria limitada como búfer de banda.
IMPRESORAS DE INYECCION DE TINTA
Las impresoras de inyección de tinta funcionan expulsando gotas de tinta de diferentes tamaños sobre el papel. Son las impresoras más populares hoy en día para el gran público por su capacidad de impresión de calidad a bajo costo. Su baja velocidad de impresión o el alto coste del mantenimiento por desgaste son factores poco importantes, ya que el número de copias realizadas en estos entornos es bajo. Su resolución media se encuentra en los 600 dpi.
La impresión de inyección de tinta, como la impresión láser, es un método sin contacto del cabezal con el papel, que se inventó mucho antes de sacar a la venta otras formas menos avanzadas, por el hecho de falta de investigación y experimentación.
La tinta es emitida por boquillas que se encuentran en el cabezal de impresión. El cabezal de impresión recorre la página en franjas horizontales, usando un motor para moverse lateralmente, y otro para pasar el papel en pasos verticales. Una franja de papel es impresa, entonces el papel se mueve, listo para una nueva franja. Para acelerar el proceso, la cabeza impresora no imprime sólo una simple línea de píxeles en cada pasada, sino también una línea vertical de píxeles a la vez. La tinta se obtiene de unos cartuchos reemplazables.
Algunas impresoras utilizan dos cartuchos, uno para la tinta negra y otro para la de color, en donde suelen estar los tres colores básicos. Estas impresoras tienen como virtud la facilidad de manejo, pero en contra, si utilizamos más un color que otro, nos veremos obligados a realizar la sustitución del cartucho cuando cualquiera de los tres colores se agote, aunque en los demás compartimentos todavía nos quede tinta de otros colores. En los últimos años esta desventaja se ha visto solventada con la aparición en el mercado de impresoras que utilizan cartuchos de tinta con colores individuales lo cual representa un gran ahorro de recursos debido a que permite aprovechar el máximo rendimiendo a la tinta de todos los colores, reemplazamos solo el cartucho que se encuentra agotado.
La mayoría de las impresoras de nueva generación utilizan cartuchos individuales por cada color, esto permite al usuario reemplazar solo el color que se agote. Además con la finalidad de mejorar los tonos claros y oscuros las nuevas impresoras fotográficas cuentan con hasta doce colores diferentes (magenta claro, cyan claro, negro claro, azul marino, naranja, rojo y verde entre otros).
Es un tipo de impresora que permite imprimir texto o gráficos, tanto en negro como en color, con gran calidad.
El dispositivo de impresión consta de un tambor fotoconductor unido a un depósito de tóner y un haz láser que es modulado y proyectado a través de un disco especular hacia el tambor fotoconductor. El giro del disco provoca un barrido del haz sobre la generatriz del tambor. Las zonas del tambor sobre las que incide el haz quedan ionizadas y, cuando esas zonas (mediante el giro del tambor) pasan por el depósito del tóner atraen el polvo ionizado de éste. Posteriormente el tambor entra en contacto con el papel, impregnando de polvo las zonas correspondientes. Para finalizar se fija la tinta al papel mediante una doble acción de presión y calor.
FUNCIONAMIENTO DE LAS IMPRESORAS LASER
La impresión láser se basa enteramente en la interacción electrostática, el mismo fenómeno que produce que un plástico atraiga trozos de papel tras ser frotado con una prenda de fibra.
Para comprender la impresión electrostática, basta saber que las cargas eléctricas pueden ser positivas o negativas, y que las cargas de signo opuesto se atraen, mientras que las cargas de igual signo se repelen.
En primer lugar, se carga negativamente toda la superficie de un tambor fotosensible, del tamaño de una hoja. Acto seguido, se hace avanzar el tambor línea a línea, y un láser recorre horizontalmente cada línea, ayudado por un espejo giratorio (en otras palabras, se produce un proceso de barrido). El láser incide en los puntos donde la tinta se deberá fijar, invirtiendo la carga (que ahora será positiva). El láser se desconecta en los lugares donde no deberá aparecer tinta (quedando con carga negativa). Por tanto, tras recorrer todo el tambor, solo habrá cargas positivas en los puntos donde deberá depositarse tinta, mientras que el resto (lo que constituirá el fondo blanco del papel) queda cargado negativamente. En otras palabras, se ha conseguido crear una imagen electrostática de la hoja a imprimir, mediante cargas positivas sobre un fondo de cargas negativas.
Puntos cargados positivamente
Los puntos cargados positivamente en el tambor atraen partículas de tóner (material electronegativo mezclado con un pigmento que lo dota de color). Por tanto, la imagen final queda "dibujada" sobre el tambor por medio de puntos negros de tóner.
El papel a imprimir se carga positivamente en su totalidad. Por tanto, al hacerlo pasar por el tambor, atraerá a las partículas de tóner (que tienen carga negativa), y la imagen quedará finalmente formada sobre papel. Finalmente, el tóner adherido al papel se funde mediante la aplicación de calor, haciendo que quede totalmente fijado al papel. Se consigue así imprimir una página en una sola pasada, al contrario que en las impresoras de inyección de tinta, donde la página se imprime línea a línea. Antes de imprimir una nueva página, se realiza un borrado electrostático del tambor, dejándolo preparado para un nuevo ciclo.
Impresoras con diodos emisores de luz
Existe otra variante de las impresoras láser en las que no es necesario un proceso de barrido. En lugar de un láser y un sistema de espejos se dispone de una hilera de diodos emisores de luz (Láser-LED). Por ejemplo, en una impresora de 300 ppp, habrá una hilera de LED cubriendo una línea completa del papel, a razón de 300 LED por pulgada. Sólo se encienden, para cada línea, aquellos diodos que corresponden a puntos donde deberá aplicarse tóner. Este proceso se repite línea a línea hasta procesar el tambor completo. Se produce el mismo efecto que con un barrido láser, pero de forma más rápida.
Tecnología con diodos de cristal líquido
Otra variante emplea diodos de cristal líquido (LCD) en lugar de LED. Estos conforman un material que es transparente u opaco según el nivel de tensión eléctrica que se le aplica. Se forzarán al estado transparente aquellos cristales correspondientes a los puntos donde deba aplicarse tóner, manteniendo el resto de diodos en estado opaco. Por otra parte, se aplica una lámpara halógena que ilumina todos los cristales, y sólo pasa luz a través de los diodos en estado transparente, invirtiendo la carga en el tambor.
Ventajas e inconvenientes de la impresión láser
Las impresoras láser son mucho más rápidas que las impresoras de inyección de tinta. Además, están dotadas de una mayor precisión en la colocación de puntos sobre el papel. También economizan tinta, ya que depositan la cantidad de tóner necesaria, sin exceder ese límite. El tóner no es caro en comparación con los cartuchos de tinta y, además, es mucho más duradero, lo que resulta rentable en el entorno de una oficina, donde se imprimen gran cantidad de documentos diariamente. Como desventaja principal, el precio de estas impresoras es muy elevado en comparación con las impresoras de inyección de tinta.
IMPRESORA DE MATRIZ DE PUNTO
Una impresora es un periférico de ordenador que permite producir una copia permanente de textos o gráficos de documentos almacenados en formato electrónico, imprimiéndolos en medios físicos, normalmente en papel o transparencias, utilizando cartuchos de tinta o tecnología láser. Muchas impresoras son usadas como periféricos, y están permanentemente unidas al ordenador por un cable. Otras impresoras, llamadas impresoras de red, tienen un interfaz de red interno (típicamente wireless o Ethernet), y que puede servir como un dispositivo para imprimir en papel algún documento para cualquier usuario de la red.
IMPRESORA DE MATRIZ DE PUNTO FUNCIONAN
haciendo avanzan el papel verticalmente, una línea a la vez, alrededor de un rodillo de hule. Al mismo tiempo, una cabeza de impresión viaja en forma horizontal sobre una varilla de metal de un lado al otro. La cabeza de impresión contiene una matriz de agujas metálicas (pon lo regular 9 o 24) que se extiende en varias combinaciones para realizar la impresión física sobre el papel. Entre las agujas y el papel hay una cinta entintada, muy similar a la que se usa en una máquina de escribir. Las agujas presionan a través de la cinta sobre la página para hacer una serie de puntos pequeños, formando caracteres sobre la página. Las impresoras de matriz de puntos tienen capacidades gráficas rudimentarias, las cuales les permiten producir solamente mapas de bits de baja resolución, utilizando su memoria limitada como búfer de banda.
IMPRESORAS DE INYECCION DE TINTA
Las impresoras de inyección de tinta funcionan expulsando gotas de tinta de diferentes tamaños sobre el papel. Son las impresoras más populares hoy en día para el gran público por su capacidad de impresión de calidad a bajo costo. Su baja velocidad de impresión o el alto coste del mantenimiento por desgaste son factores poco importantes, ya que el número de copias realizadas en estos entornos es bajo. Su resolución media se encuentra en los 600 dpi.
La impresión de inyección de tinta, como la impresión láser, es un método sin contacto del cabezal con el papel, que se inventó mucho antes de sacar a la venta otras formas menos avanzadas, por el hecho de falta de investigación y experimentación.
La tinta es emitida por boquillas que se encuentran en el cabezal de impresión. El cabezal de impresión recorre la página en franjas horizontales, usando un motor para moverse lateralmente, y otro para pasar el papel en pasos verticales. Una franja de papel es impresa, entonces el papel se mueve, listo para una nueva franja. Para acelerar el proceso, la cabeza impresora no imprime sólo una simple línea de píxeles en cada pasada, sino también una línea vertical de píxeles a la vez. La tinta se obtiene de unos cartuchos reemplazables.
Algunas impresoras utilizan dos cartuchos, uno para la tinta negra y otro para la de color, en donde suelen estar los tres colores básicos. Estas impresoras tienen como virtud la facilidad de manejo, pero en contra, si utilizamos más un color que otro, nos veremos obligados a realizar la sustitución del cartucho cuando cualquiera de los tres colores se agote, aunque en los demás compartimentos todavía nos quede tinta de otros colores. En los últimos años esta desventaja se ha visto solventada con la aparición en el mercado de impresoras que utilizan cartuchos de tinta con colores individuales lo cual representa un gran ahorro de recursos debido a que permite aprovechar el máximo rendimiendo a la tinta de todos los colores, reemplazamos solo el cartucho que se encuentra agotado.
La mayoría de las impresoras de nueva generación utilizan cartuchos individuales por cada color, esto permite al usuario reemplazar solo el color que se agote. Además con la finalidad de mejorar los tonos claros y oscuros las nuevas impresoras fotográficas cuentan con hasta doce colores diferentes (magenta claro, cyan claro, negro claro, azul marino, naranja, rojo y verde entre otros).
10.UNIDAD DE CD-ROM
UNIDAD DE CD-ROM
Un CD-ROM (siglas del inglés Compact Disc - Read Only Memory, "Disco Compacto - Memoria de Sólo Lectura"), es un disco compacto utilizado para almacenar información no volátil, el mismo medio utilizado por los CD de audio, puede ser leído por un computador con lectora de CD. Un CD-ROM es un disco de plástico plano con información digital codificada en una espiral desde el centro hasta el borde exterior.
CAPACIDAD
Un CD-ROM estándar puede albergar 650 o 700 (a veces 800) MB de datos. El CD-ROM es popular para la distribución de software, especialmente aplicaciones multimedia, y grandes bases de datos. Un CD pesa menos de 30 gramos.
Para poner la memoria del CD-ROM en contexto, una novela promedio contiene 60,000 palabras. Si se asume que una palabra promedio tiene 10 letras (de hecho es considerablemente menos de 10 de letras) y cada letra ocupa un byte, una novela por lo tanto ocuparía 600,000 bytes (600 kb). Un CD puede por lo tanto contener más de 1000 novelas. Si cada novela ocupa por lo menos un centímetro en un estante, entonces un CD puede contener el equivalente de más de 10 metros en el estante. Sin embargo, los datos textuales pueden ser comprimidos diez veces más, usando algoritmos compresores, por lo tanto un CD-ROM puede almacenar el equivalente a más de 100 metros de estante
Una lectora de CD es un dispositivo electrónico que permite la lectura de estos mediante el empleo de un haz de un rayo láser y la posterior transformación de estos en impulsos eléctricos que la computadora interpreta, escritos por grabadoras de CD (a menudo llamadas "quemadoras") -dispositivo similar a la lectora de CD, con la diferencia que hace lo contrario a la lectora, es decir, transformar impulsos eléctricos en un haz de luz láser que almacenan en el CD datos binarios en forma de pozos y llanos-.
Los pozos tienen una anchura de 0,6 micras, mientras que su profundidad (respecto a los llanos) se reduce a 0,12 micras. La longitud de pozos y llanos está entre las 0,9 y las 3,3 micras. Entre una revolución de la espiral y las adyacentes hay una distancia aproximada de 1,6 micras (lo que hace cerca de 20 marcas por centímetro).
Es creencia muy común el pensar que un pozo corresponde a un valor binario y un llano al otro valor. Sin embargo, esto no es así, sino que los valores binarios son detectados por las transiciones de pozo a llano, y viceversa: una transición determina un 1 binario, mientras que la longitud de un pozo o un llano indica el número consecutivo de 0 binarios.
CD-RW
Un disco compacto regrabable, conocido popularmente como CD-RW (sigla del inglés de Compact Disc ReWritable) es un soporte digital óptico utilizado para almacenar cualquier tipo de información. Este tipo de CD puede ser grabado múltiples veces, ya que permite que los datos almacenados sean borrados. Fue desarrollado conjuntamente en 1980 por las empresas Sony y Philips, y comenzó a comercializarse en 1982. Hoy en día tecnologías como el DVD han desplazado en parte esta forma de almacenamiento, aunque su uso sigue vigente.
En el disco CD-RW la capa que contiene la información está formada por una aleación cristalina de plata, indio, antimonio y telurio que presenta una interesante cualidad: si se calienta hasta cierta temperatura, cuando se enfría deviene cristalino, pero si al calentarse se alcanza una temperatura aún más elevada, cuando se enfría queda con estructura amorfa. La superficie cristalina permite que la luz se refleje bien en la zona reflectante mientras que las zonas con estructura amorfa absorben la luz. Por ello el CD-RW utiliza tres tipos de luz:
Láser de escritura: Se usa para escribir. Calienta pequeñas zonas de la superficie para que el material se torne amorfo.
Láser de borrado: Se usa para borrar. Tiene una intensidad menor que el de escritura con lo que se consigue el estado cristalino.
Láser de lectura: Se usa para leer. Tiene menor intensidad que el de borrado. Se refleja en zonas cristalinas y se dispersa en las amorfas.
DVD
Es un dispositivo de almacenamiento óptico cuyo estándar surgió en 1995. unidad de dvd El nombre de este dispositivo hace referencia a la multitud de maneras en las que se almacenan los datos: DVD-ROM (dispositivo de lectura únicamente), DVD-R y DVD+R (solo pueden escribirse una vez), DVD-RW y DVD+RW (permiten grabar y borrar las veces que se quiera). También difieren en la capacidad de almacenamiento de cada uno de los tipos.
Información técnica
Un DVD tiene 24 bits, una velocidad de muestreo de 48000 Hz y un rango dinámico de 144 dB. Se dividen en dos categorías: los de capa simple y los de doble capa.
Los DVD de capa simple puede guardar hasta 4,7 gigabytes según los fabricantes en base decimal, y aproximadamente 4,38 gigabytes reales en base binaria o gibibytes (se lo conoce como DVD-5), alrededor de doce veces más que un CD estándar. Emplea un láser de lectura con una longitud de onda de 650 nm (en el caso de los CD, es de 780 nm) y una apertura numérica de 0,6 (frente a los 0,45 del CD), la resolución de lectura se incrementa en un factor de 1,65. Esto es aplicable en dos dimensiones, así que la densidad de datos física real se incrementa en un factor de 3,3.
VELOCIDAD
Las primeras unidades lectoras CD y DVD leían datos a velocidad constante (velocidad lineal constante o CLV). Los datos en el disco pasaban bajo el láser de lectura a velocidad constante. Como la velocidad lineal (metros/segundo) de la pista es tanto mayor cuanto más alejados esté del centro del disco (de manera proporcional al radio), la velocidad rotacional del disco se ajustaba de acuerdo a qué porción del disco se estaba leyendo. Actualmente, la mayor parte de unidades de CD y DVD tienen una velocidad de rotación constante (velocidad angular constante o CAV). La máxima velocidad de transferencia de datos especificada para una cierta unidad y disco se alcanza solamente en los extremos del disco. Por tanto, la velocidad media de la unidad lectora equivale al 50-70% de la velocidad máxima para la unidad y el disco. Aunque esto puede parecer una desventaja, tales unidades tienen un menor tiempo de búsqueda, pues nunca deben cambiar la velocidad de rotación del disco.
BLUE-RAY
También conocido como Blu-ray Disc o BD, es un formato de disco óptico de nueva generación de 12 cm de diámetro (igual que el CD y el DVD) para el vídeo de alta definición y almacenamiento de datos de alta densidad. Su capacidad de almacenamiento llega a 50 GB a doble capa y a 25 GB a una capa, aunque los hay de mayor capacidad. La videoconsola PlayStation 3 puede leer discos de hasta doble capa, y se ha confirmado que está lista para recibir el disco de 16 capas a razón de 400 GB
Capacidad de almacenaje y velocidad
Una capa de disco Blu-ray puede contener alrededor de 25 GB o cerca de 6 horas de vídeo de alta definición más audio; también está en el mercado el disco de doble capa, que puede contener aproximadamente 50 GB. La velocidad de transferencia de datos es de 36 Mbit/s (54 Mbps para BD-ROM), pero ya están en desarrollo prototipos a velocidad de transferencia 2x (el doble, 72 Mbit por segundo). Ya está disponible el BD-RE (formato reescribible) estándar, así como los formatos BD-R (grabable) y el BD-ROM, como parte de la versión 2.0.
HD DVD
fue un formato de almacenamiento óptico desarrollado como un estándar para el DVD de alta definición por las empresas Toshiba, Microsoft y NEC, así como por varias productoras de cine. Puede almacenar hasta 30 GB.
Este formato acabó por sucumbir ante su inmediato competidor, el Blu-ray, por convertirse en el estándar sucesor del DVD. Después de la caída de muchos apoyos de HD DVD, Toshiba decidió cesar de fabricar más reproductores y continuar con las investigaciones para mejorar su formato
Existen HD DVD de una capa, con una capacidad de 15 GB (unas 4 horas de vídeo de alta definición) y de doble capa, con una capacidad de 30 GB. Toshiba ha anunciado que existe en desarrollo un disco con triple capa, que alcanzaría los 51 GB de capacidad (17 GB por capa). En el caso de los HD DVD-RW las capacidades son de 15 y 30 GB, respectivamente, para una o dos capas. La velocidad de transferencia del dispositivo se estima en 36,5 Mbps.
El HD DVD
trabaja con un láser violeta con una longitud de onda de 405 nm.
Por lo demás, un HD DVD es muy parecido a un DVD convencional. La capa externa del disco tiene un grosor de 0,6 mm, el mismo que el DVD y la apertura numérica de la lente es de 0,65 (0,6 para el DVD).
Todos estos datos llevan a que los costos de producción de los discos HD DVD sean algo más reducidos que los del Blu-ray, dado que sus características se asemejan mucho a las del DVD actual.
Existen HD DVD de una capa, con una capacidad de 15 GB (unas 4 horas de vídeo de alta definición) y de doble capa, con una capacidad de 30 GB. Toshiba ha anunciado que existe en desarrollo un disco con triple capa, que alcanzaría los 51 GB de capacidad (17 GB por capa). En el caso de los HD DVD-RW las capacidades son de 15 y 30 GB, respectivamente, para una o dos capas. La velocidad de transferencia del dispositivo se estima en 36,5 Mbps.
El HD DVD trabaja con un láser violeta con una longitud de onda de 405 nm.
Por lo demás, un HD DVD es muy parecido a un DVD convencional. La capa externa del disco tiene un grosor de 0,6 mm, el mismo que el DVD y la apertura numérica de la lente es de 0,65 (0,6 para el DVD).
Todos estos datos llevan a que los costos de producción de los discos HD DVD sean algo más reducidos que los del Blu-ray, dado que sus características se asemejan mucho a las del DVD actual.
Un CD-ROM (siglas del inglés Compact Disc - Read Only Memory, "Disco Compacto - Memoria de Sólo Lectura"), es un disco compacto utilizado para almacenar información no volátil, el mismo medio utilizado por los CD de audio, puede ser leído por un computador con lectora de CD. Un CD-ROM es un disco de plástico plano con información digital codificada en una espiral desde el centro hasta el borde exterior.
CAPACIDAD
Un CD-ROM estándar puede albergar 650 o 700 (a veces 800) MB de datos. El CD-ROM es popular para la distribución de software, especialmente aplicaciones multimedia, y grandes bases de datos. Un CD pesa menos de 30 gramos.
Para poner la memoria del CD-ROM en contexto, una novela promedio contiene 60,000 palabras. Si se asume que una palabra promedio tiene 10 letras (de hecho es considerablemente menos de 10 de letras) y cada letra ocupa un byte, una novela por lo tanto ocuparía 600,000 bytes (600 kb). Un CD puede por lo tanto contener más de 1000 novelas. Si cada novela ocupa por lo menos un centímetro en un estante, entonces un CD puede contener el equivalente de más de 10 metros en el estante. Sin embargo, los datos textuales pueden ser comprimidos diez veces más, usando algoritmos compresores, por lo tanto un CD-ROM puede almacenar el equivalente a más de 100 metros de estante
Una lectora de CD es un dispositivo electrónico que permite la lectura de estos mediante el empleo de un haz de un rayo láser y la posterior transformación de estos en impulsos eléctricos que la computadora interpreta, escritos por grabadoras de CD (a menudo llamadas "quemadoras") -dispositivo similar a la lectora de CD, con la diferencia que hace lo contrario a la lectora, es decir, transformar impulsos eléctricos en un haz de luz láser que almacenan en el CD datos binarios en forma de pozos y llanos-.
Los pozos tienen una anchura de 0,6 micras, mientras que su profundidad (respecto a los llanos) se reduce a 0,12 micras. La longitud de pozos y llanos está entre las 0,9 y las 3,3 micras. Entre una revolución de la espiral y las adyacentes hay una distancia aproximada de 1,6 micras (lo que hace cerca de 20 marcas por centímetro).
Es creencia muy común el pensar que un pozo corresponde a un valor binario y un llano al otro valor. Sin embargo, esto no es así, sino que los valores binarios son detectados por las transiciones de pozo a llano, y viceversa: una transición determina un 1 binario, mientras que la longitud de un pozo o un llano indica el número consecutivo de 0 binarios.
CD-RW
Un disco compacto regrabable, conocido popularmente como CD-RW (sigla del inglés de Compact Disc ReWritable) es un soporte digital óptico utilizado para almacenar cualquier tipo de información. Este tipo de CD puede ser grabado múltiples veces, ya que permite que los datos almacenados sean borrados. Fue desarrollado conjuntamente en 1980 por las empresas Sony y Philips, y comenzó a comercializarse en 1982. Hoy en día tecnologías como el DVD han desplazado en parte esta forma de almacenamiento, aunque su uso sigue vigente.
En el disco CD-RW la capa que contiene la información está formada por una aleación cristalina de plata, indio, antimonio y telurio que presenta una interesante cualidad: si se calienta hasta cierta temperatura, cuando se enfría deviene cristalino, pero si al calentarse se alcanza una temperatura aún más elevada, cuando se enfría queda con estructura amorfa. La superficie cristalina permite que la luz se refleje bien en la zona reflectante mientras que las zonas con estructura amorfa absorben la luz. Por ello el CD-RW utiliza tres tipos de luz:
Láser de escritura: Se usa para escribir. Calienta pequeñas zonas de la superficie para que el material se torne amorfo.
Láser de borrado: Se usa para borrar. Tiene una intensidad menor que el de escritura con lo que se consigue el estado cristalino.
Láser de lectura: Se usa para leer. Tiene menor intensidad que el de borrado. Se refleja en zonas cristalinas y se dispersa en las amorfas.
DVD
Es un dispositivo de almacenamiento óptico cuyo estándar surgió en 1995. unidad de dvd El nombre de este dispositivo hace referencia a la multitud de maneras en las que se almacenan los datos: DVD-ROM (dispositivo de lectura únicamente), DVD-R y DVD+R (solo pueden escribirse una vez), DVD-RW y DVD+RW (permiten grabar y borrar las veces que se quiera). También difieren en la capacidad de almacenamiento de cada uno de los tipos.
Información técnica
Un DVD tiene 24 bits, una velocidad de muestreo de 48000 Hz y un rango dinámico de 144 dB. Se dividen en dos categorías: los de capa simple y los de doble capa.
Los DVD de capa simple puede guardar hasta 4,7 gigabytes según los fabricantes en base decimal, y aproximadamente 4,38 gigabytes reales en base binaria o gibibytes (se lo conoce como DVD-5), alrededor de doce veces más que un CD estándar. Emplea un láser de lectura con una longitud de onda de 650 nm (en el caso de los CD, es de 780 nm) y una apertura numérica de 0,6 (frente a los 0,45 del CD), la resolución de lectura se incrementa en un factor de 1,65. Esto es aplicable en dos dimensiones, así que la densidad de datos física real se incrementa en un factor de 3,3.
VELOCIDAD
Las primeras unidades lectoras CD y DVD leían datos a velocidad constante (velocidad lineal constante o CLV). Los datos en el disco pasaban bajo el láser de lectura a velocidad constante. Como la velocidad lineal (metros/segundo) de la pista es tanto mayor cuanto más alejados esté del centro del disco (de manera proporcional al radio), la velocidad rotacional del disco se ajustaba de acuerdo a qué porción del disco se estaba leyendo. Actualmente, la mayor parte de unidades de CD y DVD tienen una velocidad de rotación constante (velocidad angular constante o CAV). La máxima velocidad de transferencia de datos especificada para una cierta unidad y disco se alcanza solamente en los extremos del disco. Por tanto, la velocidad media de la unidad lectora equivale al 50-70% de la velocidad máxima para la unidad y el disco. Aunque esto puede parecer una desventaja, tales unidades tienen un menor tiempo de búsqueda, pues nunca deben cambiar la velocidad de rotación del disco.
BLUE-RAY
También conocido como Blu-ray Disc o BD, es un formato de disco óptico de nueva generación de 12 cm de diámetro (igual que el CD y el DVD) para el vídeo de alta definición y almacenamiento de datos de alta densidad. Su capacidad de almacenamiento llega a 50 GB a doble capa y a 25 GB a una capa, aunque los hay de mayor capacidad. La videoconsola PlayStation 3 puede leer discos de hasta doble capa, y se ha confirmado que está lista para recibir el disco de 16 capas a razón de 400 GB
Capacidad de almacenaje y velocidad
Una capa de disco Blu-ray puede contener alrededor de 25 GB o cerca de 6 horas de vídeo de alta definición más audio; también está en el mercado el disco de doble capa, que puede contener aproximadamente 50 GB. La velocidad de transferencia de datos es de 36 Mbit/s (54 Mbps para BD-ROM), pero ya están en desarrollo prototipos a velocidad de transferencia 2x (el doble, 72 Mbit por segundo). Ya está disponible el BD-RE (formato reescribible) estándar, así como los formatos BD-R (grabable) y el BD-ROM, como parte de la versión 2.0.
HD DVD
fue un formato de almacenamiento óptico desarrollado como un estándar para el DVD de alta definición por las empresas Toshiba, Microsoft y NEC, así como por varias productoras de cine. Puede almacenar hasta 30 GB.
Este formato acabó por sucumbir ante su inmediato competidor, el Blu-ray, por convertirse en el estándar sucesor del DVD. Después de la caída de muchos apoyos de HD DVD, Toshiba decidió cesar de fabricar más reproductores y continuar con las investigaciones para mejorar su formato
Existen HD DVD de una capa, con una capacidad de 15 GB (unas 4 horas de vídeo de alta definición) y de doble capa, con una capacidad de 30 GB. Toshiba ha anunciado que existe en desarrollo un disco con triple capa, que alcanzaría los 51 GB de capacidad (17 GB por capa). En el caso de los HD DVD-RW las capacidades son de 15 y 30 GB, respectivamente, para una o dos capas. La velocidad de transferencia del dispositivo se estima en 36,5 Mbps.
El HD DVD
trabaja con un láser violeta con una longitud de onda de 405 nm.
Por lo demás, un HD DVD es muy parecido a un DVD convencional. La capa externa del disco tiene un grosor de 0,6 mm, el mismo que el DVD y la apertura numérica de la lente es de 0,65 (0,6 para el DVD).
Todos estos datos llevan a que los costos de producción de los discos HD DVD sean algo más reducidos que los del Blu-ray, dado que sus características se asemejan mucho a las del DVD actual.
Existen HD DVD de una capa, con una capacidad de 15 GB (unas 4 horas de vídeo de alta definición) y de doble capa, con una capacidad de 30 GB. Toshiba ha anunciado que existe en desarrollo un disco con triple capa, que alcanzaría los 51 GB de capacidad (17 GB por capa). En el caso de los HD DVD-RW las capacidades son de 15 y 30 GB, respectivamente, para una o dos capas. La velocidad de transferencia del dispositivo se estima en 36,5 Mbps.
El HD DVD trabaja con un láser violeta con una longitud de onda de 405 nm.
Por lo demás, un HD DVD es muy parecido a un DVD convencional. La capa externa del disco tiene un grosor de 0,6 mm, el mismo que el DVD y la apertura numérica de la lente es de 0,65 (0,6 para el DVD).
Todos estos datos llevan a que los costos de producción de los discos HD DVD sean algo más reducidos que los del Blu-ray, dado que sus características se asemejan mucho a las del DVD actual.
9. DISCO DURO
DISCO DURO
Un disco duro o disco rígido es un dispositivo no volátil, que conserva la información aun con la pérdida de energía, que emplea un sistema de grabación magnética digital. Dentro de la carcasa hay una serie de platos metálicos apilados girando a gran velocidad. Sobre los platos se sitúan los cabezales encargados de leer o escribir los impulsos magnéticos. Hay distintos estándares para comunicar un disco duro con la computadora; las interfaces más comunes son Integrated Drive Electronics (IDE, también llamado ATA) , SCSI generalmente usado en servidores, SATA, este último estandarizado en el año 2004 y FC exclusivo para servidores.
Un disco duro o disco rígido es un dispositivo no volátil, que conserva la información aun con la pérdida de energía, que emplea un sistema de grabación magnética digital. Dentro de la carcasa hay una serie de platos metálicos apilados girando a gran velocidad. Sobre los platos se sitúan los cabezales encargados de leer o escribir los impulsos magnéticos. Hay distintos estándares para comunicar un disco duro con la computadora; las interfaces más comunes son Integrated Drive Electronics (IDE, también llamado ATA) , SCSI generalmente usado en servidores, SATA, este último estandarizado en el año 2004 y FC exclusivo para servidores.
ESTRUCTURA
Dentro de un disco duro hay uno o varios platos (entre 2 y 4 normalmente, aunque hay hasta de 6 ó 7 platos), que son discos (de aluminio o cristal) concéntricos y que giran todos a la vez. El cabezal (dispositivo de lectura y escritura) es un conjunto de brazos alineados verticalmente que se mueven hacia dentro o fuera según convenga, todos a la vez. En la punta de dichos brazos están las cabezas de lectura/escritura, que gracias al movimiento del cabezal pueden leer tanto zonas interiores como exteriores del disco.
Cada plato tiene dos caras, y es necesaria una cabeza de lectura/escritura para cada cara (no es una cabeza por plato, sino una por cara). Si se mira el esquema Cilindro-Cabeza-Sector (más abajo), a primera vista se ven 4 brazos, uno para cada plato.
direccionamiento
Plato: cada uno de los discos que hay dentro del disco duro.
Cara: cada uno de los dos lados de un plato.
Cabeza: número de cabezales.
Pista: una circunferencia dentro de una cara; la pista 0 está en el borde exterior.
Cilindro: conjunto de varias pistas; son todas las circunferencias que están alineadas verticalmente (una de cada cara).
Sector : cada una de las divisiones de una pista. El tamaño del sector no es fijo, siendo el estándar actual 512 bytes. Antiguamente el número de sectores por pista era fijo, lo cual desaprovechaba el espacio significativamente, ya que en las pistas exteriores pueden almacenarse más sectores que en las interiores. Así, apareció la tecnología ZBR (grabación de bits por zonas) que aumenta el número de sectores en las pistas exteriores, y usa más eficientemente el disco duro.
Tipos de conexión
Si hablamos de disco rígido podemos citar a los distintos tipos de conexión que poseen los mismos con la placa madre, es decir pueden ser SATA, IDE, SCSI o SAS.
IDE: Integrated Device Electronics ("Dispositivo con electrónica integrada") o ATA (Advanced Technology Attachment), controla los dispositivos de almacenamiento masivo de datos, como los discos duros y ATAPI (Advanced Technology Attachment Packet Interface) Hasta hace poco, el estándar principal por su versatilidad y relación calidad/precio.
SCSI: Son discos duros de gran capacidad de almacenamiento . Se presentan bajo tres especificaciones: SCSI Estándar (Standard SCSI), SCSI Rápido (Fast SCSI) y SCSI Ancho-Rápido (Fast-Wide SCSI). Su tiempo medio de acceso puede llegar a 7 mseg y su velocidad de transmisión secuencial de información puede alcanzar teóricamente los 5 Mbps en los discos SCSI Estándares, los 10 Mbps en los discos SCSI Rápidos y los 20 Mbps en los discos SCSI Anchos-Rápidos (SCSI-2). Un controlador SCSI puede manejar hasta 7 discos duros SCSI (o 7 periféricos SCSI) con conexión tipo margarita (daisy-chain). A diferencia de los discos IDE, pueden trabajar asincrónicamente con relación al microprocesador, lo que los vuelve más rápidos.
SATA (Serial ATA): Nuevo estándar de conexión que utiliza un bus serie para la transmisión de datos. Notablemente más rápido y eficiente que IDE. En la actualidad hay dos versiones, SATA 1 de hasta 1,5 Gigabits por segundo (192 MB/s) y SATA 2 de hasta 3,0 Gb/s (384 MB/s) de velocidad de transferencia.
SAS (Serial Attached SCSI): Interfaz de transferencia de datos en serie, sucesor del SCSI paralelo, aunque sigue utilizando comandos SCSI para interaccionar con los dispositivos SAS. Aumenta la velocidad y permite la conexión y desconexión de forma rápida. Una de las principales características es que aumenta la velocidad de transferencia al aumentar el número de dispositivos conectados, es decir, puede gestionar una tasa de transferencia constante para cada dispositivo conectado, además de terminar con la limitación de 16 dispositivos existente en SCSI, es por ello que se vaticina que la tecnología SAS irá reemplazando a su predecesora SCSI. Además, el conector es el mismo que en la interfaz SATA y permite utilizar estos discos duros, para aplicaciones con menos necesidad de velocidad, ahorrando costos. Por lo tanto, los discos
SATA pueden ser utilizados por controladoras SAS pero no a la inversa, una controladora SATA no reconoce discos SAS.
CARACTERISTICAS
Tiempo medio de acceso: Tiempo medio que tarda la aguja en situarse en la pista y el sector deseado; es la suma del Tiempo medio de búsqueda (situarse en la pista), Tiempo de lectura/escritura y la Latencia media (situarse en el sector).
Tiempo medio de búsqueda: Tiempo medio que tarda la aguja en situarse en la pista deseada; es la mitad del tiempo empleado por la aguja en ir desde la pista más periférica hasta la más central del disco.
Tiempo de lectura/escritura: Tiempo medio que tarda el disco en leer o escribir nueva información: Depende de la cantidad de información que se quiere leer o escribir, el tamaño de bloque, el número de cabezales, el tiempo por vuelta y la cantidad de sectores por pista.
Latencia media: Tiempo medio que tarda la aguja en situarse en el sector deseado; es la mitad del tiempo empleado en una rotación completa del disco.
Velocidad de rotación: Revoluciones por minuto de los platos. A mayor velocidad de rotación, menor latencia media.
Tasa de transferencia: Velocidad a la que puede transferir la información a la computadora una vez la aguja está situada en la pista y sector correctos. Puede ser velocidad sostenida o de pico.
CONFIGURACION
Todos los discos duros tienen unos pequeños jumpers en donde están las conexiones. Esto es para “decirle” a la máquina que es el IDE principal (los lectores ópticos como CD-ROM, DVD, grabadoras también se conectan por medio de las conexiones IDE y en una sola conexión pueden conectarse 2 dispositivos).
Cada disco duro tiene un diagrama en la etiqueta para saber cómo configurarlo, pero al ser nuestro disco duro principal lo configuraremos como “master”. Cada disco tiene su propio diagrama, por lo que debemos verlo en cada disco que tengamos, éste es sólo un ejemplo:
INSTALACION
Una vez configurado como master tendremos que instalarlo en el gabinete. Es de lo más sencillo, pues sólo lo atornillaremos en cualquier lugar que acomode, generalmente debajo del lector de disquetes.
El cable que usaremos para conectar el disco duro a la Motherboard se llama cable IDE. Generalmente tiene 3 conectores, 2 a los extremos y uno central. Sin embargo no esta exactamente al centro y esto tiene una razón: El conector que está más alejado del centro se conectará a la motherboard y el del otro extremo al disco duro. El conector central podemos usarlo para un lector óptico o para otro disco duro que nos sirva de almacén de datos. Sólo que en ambos casos hay que configurar el dispositivo secundario como “Slave”
Un disco duro o disco rígido es un dispositivo no volátil, que conserva la información aun con la pérdida de energía, que emplea un sistema de grabación magnética digital. Dentro de la carcasa hay una serie de platos metálicos apilados girando a gran velocidad. Sobre los platos se sitúan los cabezales encargados de leer o escribir los impulsos magnéticos. Hay distintos estándares para comunicar un disco duro con la computadora; las interfaces más comunes son Integrated Drive Electronics (IDE, también llamado ATA) , SCSI generalmente usado en servidores, SATA, este último estandarizado en el año 2004 y FC exclusivo para servidores.
Un disco duro o disco rígido es un dispositivo no volátil, que conserva la información aun con la pérdida de energía, que emplea un sistema de grabación magnética digital. Dentro de la carcasa hay una serie de platos metálicos apilados girando a gran velocidad. Sobre los platos se sitúan los cabezales encargados de leer o escribir los impulsos magnéticos. Hay distintos estándares para comunicar un disco duro con la computadora; las interfaces más comunes son Integrated Drive Electronics (IDE, también llamado ATA) , SCSI generalmente usado en servidores, SATA, este último estandarizado en el año 2004 y FC exclusivo para servidores.
ESTRUCTURA
Dentro de un disco duro hay uno o varios platos (entre 2 y 4 normalmente, aunque hay hasta de 6 ó 7 platos), que son discos (de aluminio o cristal) concéntricos y que giran todos a la vez. El cabezal (dispositivo de lectura y escritura) es un conjunto de brazos alineados verticalmente que se mueven hacia dentro o fuera según convenga, todos a la vez. En la punta de dichos brazos están las cabezas de lectura/escritura, que gracias al movimiento del cabezal pueden leer tanto zonas interiores como exteriores del disco.
Cada plato tiene dos caras, y es necesaria una cabeza de lectura/escritura para cada cara (no es una cabeza por plato, sino una por cara). Si se mira el esquema Cilindro-Cabeza-Sector (más abajo), a primera vista se ven 4 brazos, uno para cada plato.
direccionamiento
Plato: cada uno de los discos que hay dentro del disco duro.
Cara: cada uno de los dos lados de un plato.
Cabeza: número de cabezales.
Pista: una circunferencia dentro de una cara; la pista 0 está en el borde exterior.
Cilindro: conjunto de varias pistas; son todas las circunferencias que están alineadas verticalmente (una de cada cara).
Sector : cada una de las divisiones de una pista. El tamaño del sector no es fijo, siendo el estándar actual 512 bytes. Antiguamente el número de sectores por pista era fijo, lo cual desaprovechaba el espacio significativamente, ya que en las pistas exteriores pueden almacenarse más sectores que en las interiores. Así, apareció la tecnología ZBR (grabación de bits por zonas) que aumenta el número de sectores en las pistas exteriores, y usa más eficientemente el disco duro.
Tipos de conexión
Si hablamos de disco rígido podemos citar a los distintos tipos de conexión que poseen los mismos con la placa madre, es decir pueden ser SATA, IDE, SCSI o SAS.
IDE: Integrated Device Electronics ("Dispositivo con electrónica integrada") o ATA (Advanced Technology Attachment), controla los dispositivos de almacenamiento masivo de datos, como los discos duros y ATAPI (Advanced Technology Attachment Packet Interface) Hasta hace poco, el estándar principal por su versatilidad y relación calidad/precio.
SCSI: Son discos duros de gran capacidad de almacenamiento . Se presentan bajo tres especificaciones: SCSI Estándar (Standard SCSI), SCSI Rápido (Fast SCSI) y SCSI Ancho-Rápido (Fast-Wide SCSI). Su tiempo medio de acceso puede llegar a 7 mseg y su velocidad de transmisión secuencial de información puede alcanzar teóricamente los 5 Mbps en los discos SCSI Estándares, los 10 Mbps en los discos SCSI Rápidos y los 20 Mbps en los discos SCSI Anchos-Rápidos (SCSI-2). Un controlador SCSI puede manejar hasta 7 discos duros SCSI (o 7 periféricos SCSI) con conexión tipo margarita (daisy-chain). A diferencia de los discos IDE, pueden trabajar asincrónicamente con relación al microprocesador, lo que los vuelve más rápidos.
SATA (Serial ATA): Nuevo estándar de conexión que utiliza un bus serie para la transmisión de datos. Notablemente más rápido y eficiente que IDE. En la actualidad hay dos versiones, SATA 1 de hasta 1,5 Gigabits por segundo (192 MB/s) y SATA 2 de hasta 3,0 Gb/s (384 MB/s) de velocidad de transferencia.
SAS (Serial Attached SCSI): Interfaz de transferencia de datos en serie, sucesor del SCSI paralelo, aunque sigue utilizando comandos SCSI para interaccionar con los dispositivos SAS. Aumenta la velocidad y permite la conexión y desconexión de forma rápida. Una de las principales características es que aumenta la velocidad de transferencia al aumentar el número de dispositivos conectados, es decir, puede gestionar una tasa de transferencia constante para cada dispositivo conectado, además de terminar con la limitación de 16 dispositivos existente en SCSI, es por ello que se vaticina que la tecnología SAS irá reemplazando a su predecesora SCSI. Además, el conector es el mismo que en la interfaz SATA y permite utilizar estos discos duros, para aplicaciones con menos necesidad de velocidad, ahorrando costos. Por lo tanto, los discos
SATA pueden ser utilizados por controladoras SAS pero no a la inversa, una controladora SATA no reconoce discos SAS.
CARACTERISTICAS
Tiempo medio de acceso: Tiempo medio que tarda la aguja en situarse en la pista y el sector deseado; es la suma del Tiempo medio de búsqueda (situarse en la pista), Tiempo de lectura/escritura y la Latencia media (situarse en el sector).
Tiempo medio de búsqueda: Tiempo medio que tarda la aguja en situarse en la pista deseada; es la mitad del tiempo empleado por la aguja en ir desde la pista más periférica hasta la más central del disco.
Tiempo de lectura/escritura: Tiempo medio que tarda el disco en leer o escribir nueva información: Depende de la cantidad de información que se quiere leer o escribir, el tamaño de bloque, el número de cabezales, el tiempo por vuelta y la cantidad de sectores por pista.
Latencia media: Tiempo medio que tarda la aguja en situarse en el sector deseado; es la mitad del tiempo empleado en una rotación completa del disco.
Velocidad de rotación: Revoluciones por minuto de los platos. A mayor velocidad de rotación, menor latencia media.
Tasa de transferencia: Velocidad a la que puede transferir la información a la computadora una vez la aguja está situada en la pista y sector correctos. Puede ser velocidad sostenida o de pico.
CONFIGURACION
Todos los discos duros tienen unos pequeños jumpers en donde están las conexiones. Esto es para “decirle” a la máquina que es el IDE principal (los lectores ópticos como CD-ROM, DVD, grabadoras también se conectan por medio de las conexiones IDE y en una sola conexión pueden conectarse 2 dispositivos).
Cada disco duro tiene un diagrama en la etiqueta para saber cómo configurarlo, pero al ser nuestro disco duro principal lo configuraremos como “master”. Cada disco tiene su propio diagrama, por lo que debemos verlo en cada disco que tengamos, éste es sólo un ejemplo:
INSTALACION
Una vez configurado como master tendremos que instalarlo en el gabinete. Es de lo más sencillo, pues sólo lo atornillaremos en cualquier lugar que acomode, generalmente debajo del lector de disquetes.
El cable que usaremos para conectar el disco duro a la Motherboard se llama cable IDE. Generalmente tiene 3 conectores, 2 a los extremos y uno central. Sin embargo no esta exactamente al centro y esto tiene una razón: El conector que está más alejado del centro se conectará a la motherboard y el del otro extremo al disco duro. El conector central podemos usarlo para un lector óptico o para otro disco duro que nos sirva de almacén de datos. Sólo que en ambos casos hay que configurar el dispositivo secundario como “Slave”
8. MEMORIA ROM
MEMORIA ROM
Memoria de sólo lectura Es una clase de medio de almacenamiento utilizado en los ordenadores y otros dispositivos electrónicos. Los datos almacenados en la ROM no se puede modificar -al menos no de manera rápida o fácil- y se utiliza principalmente para contener el firmware (software que está estrechamente ligado a hardware específico, y es poco probable que requiera actualizaciones frecuentes).Se utiliza para guardar los archivos vítateles del computador.
Los ordenadores domésticos a comienzos de los 80 venían con todo su sistema operativo en ROM. No había otra alternativa razonable ya que las unidades de disco eran generalmente opcionales. La actualización a una nueva versión significa usar un soldador o un grupo de interruptores DIP y reemplazar el viejo chip de ROM por uno nuevo. Actualmente los sistemas operativos en general ya no van en ROM. Todavía los ordenadores pueden dejar algunos de sus programas en memoria ROM, pero incluso en este caso, es más frecuente que vaya en memoria flash. Los teléfonos móviles y los asistentes personales digitales (PDA) suelen tener programas en memoria ROM (o por lo menos en memoria flash).
Una razón de que todavía se utilice la memoria ROM para almacenar datos es la velocidad ya que los discos son más lentos. Aún más importante, no se puede leer un programa que es necesario para ejecutar un disco desde el propio disco. Por lo tanto, la BIOS, o el sistema de arranque oportuno del PC normalmente se encuentran en una memoria ROM.
PROM
Es el acrónimo de Programmable Read-Only Memory (ROM programable). Es una memoria digital donde el valor de cada bit depende del estado de un fusible (o antifusible), que puede ser quemado una sola vez. Por esto la memoria puede ser programada (pueden ser escritos los datos) una sola vez a través de un dispositivo especial, un programador PROM. Estas memorias son utilizadas para grabar datos permanentes en cantidades menores a las ROMs, o cuando los datos deben cambiar en muchos o todos los casos.
Pequeñas PROM han venido utilizándose como generadores de funciones, normalmente en conjunción con un multiplexor. A veces se preferían a las ROM porque son bipolares, habitulamente Schottky, consiguiendo mayores velocidades.
Programación Una PROM común se encuentra con todos los bits en valor 1 como valor por defecto de las fábricas; el quemado de cada fusible, cambia el valor del correspondiente bit a 0. La programación se realiza aplicando pulsos de altos voltajes que no se encuentran durante operaciones normales (12 a 21 voltios). El término Read-only (sólo lectura) se refiere a que, a diferencia de otras memorias, los datos no pueden ser cambiados (al menos por el usuario final).
PROGRAMABLE ROM
O memoria programable de sólo lectura los contenidos pueden ser leídos pero no modificados por un programa de usuario. Sus contenidos no se construyen, como la ROM, directamente en el procesador cuando éste se fabrica, sino que se crean por medio de un tipo especial "programación", ya sea por el fabricante, o por especialistas técnicos de programación del usuario. El proceso de programación es destructivo: una vez grabada, es como si fuese una ROM normal.
Las operaciones muy importantes o largas que se habían estado ejecutando mediante programas, se pueden convertir en microprogramas y grabarse permanentemente en una pastilla de memoria programable sólo de lectura. Una vez que están en forma de circuitos electrónicos, estas tareas se pueden realizar casi siempre en una fracción del tiempo que requerían antes. La flexibilidad adicional que se obtiene con la PROM puede convertirse en una desventaja si en la unidad PROM se programa un error que no se puede corregir. Para superar esta desventaja, se desarrolló la EPROM, o memoria de solo lectura reprográmale.
EPROM
son las siglas de Erasable Programmable Read-Only Memory (ROM programable borrable). Es un tipo de chip de memoria ROM no volátil inventado por el ingeniero Dov Frohman. Está formada por celdas de FAMOS (Floating Gate Avalanche-Injection Metal-Oxide Semiconductor) o "transistores de puerta flotante", cada uno de los cuales viene de fábrica sin carga, por lo que son leídos como 0 (por eso, una EPROM sin grabar se lee como 00 en todas sus celdas). Se programan mediante un dispositivo electrónico que proporciona voltajes superiores a los normalmente utilizados en los circuitos electrónicos. Las celdas que reciben carga se leen entonces como un 1.
Una vez programada, una EPROM se puede borrar solamente mediante exposición a una fuerte luz ultravioleta. Esto es debido a que los fotones de la luz excitan a los electrones de las celdas provocando que se descarguen. Las EPROMs se reconocen fácilmente por una ventana transparente en la parte alta del encapsulado, a través de la cual se puede ver el chip de silicio y que admite la luz ultravioleta durante el borrado.
EEPROM
(ROM programable y borrable eléctricamente). Es un tipo de memoria ROM que puede ser programado, borrado y reprogramado eléctricamente, a diferencia de la EPROM que ha de borrarse mediante un aparato que emite rayos ultravioletas. Son memorias no volátiles.
Las celdas de memoria de una EEPROM están constituidas por un transistor MOS, que tiene una compuerta flotante (estructura SAMOS), su estado normal esta cortado y la salida proporciona un 1 lógico.
Aunque una EEPROM puede ser leída un número ilimitado de veces, sólo puede ser borrada y reprogramada entre 100.000 y un millón de veces.
Estos dispositivos suelen comunicarse mediante protocolos como I²C, SPI y Microwire. En otras ocasiones, se integra dentro de chips como microcontroladores y DSPs para lograr una mayor rapidez.
La memoria flash es una forma avanzada de EEPROM creada por el Dr. Fujio Masuoka mientras trabajaba para Toshiba en 1984 y fue presentada en la Reunión de Aparatos Electrónicos de la IEEE de 1984. Intel vio el potencial de la invención y en 1988 lanzó el primer chip comercial de tipo NOR.
martes, 11 de mayo de 2010
7.MEMORIA RAM
MEMORIA RAM
La memoria de acceso aleatorio es la memoria desde donde el procesador recibe las instrucciones y guarda los resultados. Es el área de trabajo para la mayor parte del software de un computador.1Existe una memoria intermedia entre el procesador y la RAM, llamada cache, pero ésta sólo es una copia (de acceso rápido) de la memoria principal (típicamente discos duros) almacenada en los módulos de RAM.
MODULOS SIMM: Formato usado en computadores antiguos. Tenían un bus de datos de 16 o 32 bits
MODULOS DIMM: Usado en computadores de escritorio. Se caracterizan por tener un bus de datos de 64 bits.
MODULOS SO-DIMM: Usado en computadores portátiles. Formato miniaturizado de DIMM.
SO-DIMM y MicroDIMM.
Son formatos de memoria patra Laptops. Los sub Notebooks emplean MicroDIMM.
Existen versiones de RamBus llamadas SORIMM.
DRAM
Es un tipo de memoria dinamica de [[acceso aleatorio que se usa principalmente en los módulos de memoria RAM y en otros dispositivos, como memoria principal del sistema. Se denomina dinámica, ya que para mantener almacenado un dato, se requiere revisar el mismo y recargarlo, cada cierto período, en un ciclo de refresco. Su principal ventaja es la posibilidad de construir memorias con una gran densidad de posiciones y que todavía funcionen a una velocidad alta: en la actualidad se fabrican integrados con millones de posiciones y velocidades de acceso medidos en millones de bit por segundo. Es una memoria volátil, es decir cuando no hay alimentación eléctrica, la memoria no guarda la información. Inventada a finales de los sesenta, es una de las memorias más usadas en la actualidad.
Para 1973 Intel y otros fabricantes construían y empacaban sus integrados de memoria DRAM empleando un esquema en el que se aumentaba un pin por cada vez que se doblaba la capacidad. De acuerdo a este esquema, un integrado de 64 kilobits tendría 16 pines solo para las direcciones. Dentro de los costos más importantes para el fabricante y el ensamblador de circuitos impresos estaba la cantidad de pines del empaque y en un mercado tan competido era crucial tener los menores precios. Debido a eso, un integrado con una capacidad de 16 pines y 4Kb de capacidad fue un producto apreciado por los usuarios, que encontraban a los integrados de 22 pines, ofrecidos por Intel y Texas Instruments como insumos costosos.
FUNCIONAMIENTO
La celda de memoria es la unidad básica de cualquier memoria, capaz de almacenar un Bit en los sistemas digitales. La construcción de la celda define el funcionamiento de la misma, en el caso de la DRAM moderna, consiste en un transistor de efecto de campo y un condensador. El principio de funcionamiento básico, es sencillo: una carga se almacena en el condensador significando un 1 y sin carga un 0. El transistor funciona como un interruptor que conecta y desconecta al condensador. Este mecanismo puede implementarse con dispositivos discretos y de hecho muchas memorias anteriores a la época de los semiconductores, se basaban en arreglos de celdas transistor-condensador.
Las celdas en cualquier sistema de memoria, se organizan en la forma de matrices de dos dimensiones, a las cuales se accede por medio de las filas y las columnas. En la DRAM estas estructuras contienen millones de celdas y se fabrican sobre la superficie de la pastilla de silicio formando áreas que son visibles a simple vista. En el ejemplo tenemos un arreglo de 4x4 celdas, en el cual las líneas horizontales conectadas a las compuertas de los transistores son las llamadas filas y las líneas verticales conectadas a los canales de los FET son las columnas.
Para acceder a una posición de memoria se necesita una dirección de 4 bits, pero en las DRAM las direcciones están multiplexadas en tiempo, es decir se envían por mitades. Las entradas marcadas como a0 y a1 son el bus de direcciones y por el mismo entra la dirección de la fila y después la de la columna. Las direcciones se diferencian por medio de señales de sincronización llamadas RAS (del inglés Row Address Strobe) y CAS (Column Address Strobe) que indican la entrada de cada parte de la dirección.
EDO-RAM (Extended Data Output RAM)
Lanzada en 1995 y con tiempos de accesos de 40 o 30ns suponía una mejora sobre su antecesora la FPM. La EDO, también es capaz de enviar direcciones contiguas pero direcciona la columna que va utilizar mientras que se lee la información de la columna anterior, dando como resultado una eliminación de estados de espera, manteniendo activo el buffer de salida hasta que comienza el próximo ciclo de lectura.
BEDO-RAM (Burst Extended Data Output RAM)
Fue la evolución de la EDO RAM y competidora de la SDRAM, fue presentada en 1997. Era un tipo de memoria que usaba generadores internos de direcciones y accedía a mas de una posición de memoria en cada ciclo de reloj, de manera que lograba un desempeño un 50% mejor que la EDO. Nunca salió al mercado, dado que Intel y otros fabricantes se decidieron por esquemas de memoria sincrónicos que si bien tenían mucho del direccionamiento MOSTEK, agregan funcionalidades distintas como señales de reloj.
SDRAM
Es una memoria dinámica de acceso aleatorio (DRAM) que tiene una interfaz síncrona. Tradicionalmente, la memoria dinámica de acceso aleatorio (DRAM) tiene una interfaz asíncrona, lo que significa que el cambio de estado de la memoria tarda un cierto tiempo, dado por las características de la memoria, desde que cambian sus entradas. En cambio, en las SDRAM el cambio de estado tiene lugar en el momento señalado por una señal de reloj y, por lo tanto, está sincronizada con el bus de sistema del ordenador. El reloj también permite controlar una máquina de estados finitos interna que controla la función de "pipeline" (segmentación) de las instrucciones de entrada. Esto permite que el chip tenga un patrón de operación más complejo que la DRAM asíncrona, que no tiene una interfaz de sincronización
Las SDRAM son ampliamente utilizadas en los ordenadores, desde la original SDRAM y las posteriores DDR (o DDR1), DDR2 y DDR3. Actualmente se está diseñando la DDR4 y se prevé que estará disponible en 2012.
La latencia SDRAM no es intrínsecamente inferior (más rápido) que la DRAM asincrónica. De hecho, SDRAM temprana fue algo más lenta que estalló contemporáneas EDO DRAM debido a la lógica adicional. Los beneficios de la memoria intermedia interna SDRAM provienen de su capacidad para las operaciones de intercalar a los bancos múltiples de la memoria, lo que aumenta el ancho de banda efectivo.
Hoy en día, prácticamente todas las SDRAM se fabrica de acuerdo con las normas establecidas por la JEDEC, una asociación de la industria electrónica que adopta los estándares abiertos para facilitar la interoperabilidad de los componentes electrónicos. JEDEC ha adoptado formalmente su SDRAM estándar primero en 1993 y posteriormente aprobado normas SDRAM, incluyendo los de DDR, DDR2 y DDR3 SDRAM.
SDR SDRAM
Originalmente conocido simplemente como SDRAM, SDRAM tipo de datos solo puede aceptar un comando y la transferencia de una palabra de datos por ciclo de reloj. Las frecuencias de reloj típicas son 100 y 133 MHz. Chips están hechos con una variedad de tamaños de bus de datos (el más común 4, 8 ó 16 bits), pero los chips son generalmente montados en módulos DIMMs de 168-pines que leen o escriben 64 (non-ECC) o 72 (ECC) de bits a la vez.
El uso del bus de datos es complejo y requiere un controlador de memoria DRAM complejo. Esto es porque los datos escritos en la memoria DRAM deben ser presentadas en el mismo ciclo que escribir un comando, pero lee producir una salida de 2 o 3 ciclos después de que el comando de lectura. El controlador de memoria DRAM debe asegurarse de que el bus de datos nunca se requiere de una escritura y lectura, al mismo tiempo.
Típico SDRAM SDR velocidades de reloj de 66, 100 y 133 MHz (períodos de 15, 10, y el 7,5 ns). Frecuencias de reloj de hasta 150 MHz estaban disponibles para los entusiastas del rendimiento.
DDR-SDRAM
son del mismo tamaño que los DIMM de SDRAM, pero con más conectores: 184 pines en lugar de los 168 de la SDRAM normal.
Además, para que no exista confusión posible a la hora de instalarlos (lo cual tendría consecuencias sumamente desagradables), los DDR tienen 1 única muesca en lugar de las 2 de los DIMM "clásicos".
Evidentemente, resulta una lástima, pero tampoco podemos culpar a los fabricantes: los nuevos pines son absolutamente necesarios para implementar el sistema DDR, por no hablar de que se utiliza un voltaje distinto y que, sencillamente, tampoco nos serviría de nada poder instalarlos, porque necesitaríamos un chipset
RDRAM
es un tipo de memoria síncrona, conocida como Rambus DRAM. Éste es un tipo de memoria de siguiente generación a la DRAM en la que se ha rediseñado la DRAM desde la base pensando en cómo se debería integrar en un sistema.
El modo de funcionar de estas memorias es diferente a las DRAM, cambios producidos en una serie de decisiones de diseño que no buscan solo proporcionar un alto ancho de banda, sino que también solucionan los problemas de granularidad y número de pins. Este tipo de memoria se utilizó en el sistema de videojuegos Nintendo 64 de Nintendo y otros aparatos de posterior salida.
Características RDRAM
Una de las características más destacable dentro de las RDRAM es que su ancho de palabra es de tan sólo 16 bits comparado con los 64 a los que trabajan las SDRAM, y también trabaja a una velocidad mucho mayor, llegando hasta los 400Mhz. Al trabajar en flancos positivos y negativos, se puede decir que puede alcanzar unos 800 MHz virtuales o equivalentes; este conjunto le da un amplio ancho de banda. Por eso, a pesar de diseñarse como alternativa a la SDR SDRAM, se convirtió en competidora de la DDR SDRAM.
SLDRAM
es una DRAM fruto de un desarrollo conjunto y, en cuanto a la velocidad, puede
representar la competencia más cercana de Rambus. Su desarrollo se lleva a cabo por un grupo de 12 compañías
fabricantes de memoria. La SLDRAM es una extensión más rápida y mejorada de la arquitectura SDRAM que amplía el
actual diseño de 4 bancos a 16 bancos. El ancho de banda de SLDRAM es de los más altos 3.2GB/s y su costo no
seria tan elevado.
FPM DRAM
Memoria en modo paginado, el diseñomás comun de chips de RAM dinámica. El acceso a los bits de memoria se realiza por medio de coordenadas, fila y columna. Antes del modo paginado, era leido pulsando la fila y la columna de las líneas seleccionadas. Con el modo pagina, la fila se selecciona solo una vez para todas las columnas (bits) dentro de la fila, dando como resultado un rápido acceso. La memoria en modo paginado tambien es llamada memoria de modo Fast Page o memoria FPM, FPM RAM, FPM DRAM. El término "fast" fué añadido cuando los más nuevos chips empezaron a correr a 100 nanoseconds e incluso más.
SRAM
O Memoria Estática de Acceso Aleatorio es un tipo de memoria basada en semiconductores que, a diferencia de la memoria DRAM, es capaz de mantener los datos (mientras esté alimentada) sin necesidad de circuito de refresco (no se descargan). Sin embargo, sí son memorias volátiles, es decir que pierden la información si se les interrumpe la alimentación eléctrica.
CARACTERISTICAS
La memoria SRAM es más cara, pero más rápida y con un menor consumo (especialmente en reposo) que la memoria DRAM. Es utilizada, por tanto, cuando es necesario disponer de un mejor tiempo de acceso, o un consumo reducido, o ambos. Debido a su compleja estructura interna, es menos densa que DRAM, y por lo tanto no es utilizada cuando es necesaria una alta capacidad de datos, como por ejemplo en la memoria principal de los ordenadores personales.
Frecuencia de reloj y potencia
El consumo electrico de una SRAM varía dependiendo de la frencuencia con la cual se accede a la misma: puede llegar a tener un consumo similar a DRAM cuando es usada en alta frecuencia, y algunos circuitos integrados pueden consumir varios vatios durante su funcionamiento. Por otra parte, las SRAM utilizadas con una frecuencia baja, tienen un consumo muy bajo, del orden de micro-vatios.
TIPOS DE SRAM
SRAM no volátiles
Las SRAM no volatines presentan un funcionamiento estándar SRAM, con la salvedad de que guardan los datos cuando se interrumpe la alimentación electrica, salvaguardando información crítica. Se utilizan en situaciones donde la conservación de los datos es crucial y el uso de baterías no es posible.6
SRAM asíncrona
Las SRAM asíncronas están disponibles en tamaños desde 4Kb hasta 32Mb.7 Con un tiempo rápido de acceso, son adecuadas para el uso en equipos de comunicaciones, como switches, routers, teléfonos IP, tarjetas DSLAM, y en electrónica de automoción.
SRAM asíncrona
Las SRAM asíncronas están disponibles en tamaños desde 4Kb hasta 32Mb.7 Con un tiempo rápido de acceso, son adecuadas para el uso en equipos de comunicaciones, como switches, routers, teléfonos IP, tarjetas DSLAM, y en electrónica de automoción.
EDRAM
significa "incrustado DRAM", Un condensador Basado en memoria dinámica de acceso aleatorio generalmente integrados en el mismo morir o en el mismo paquete como el principal ASIC o procesador, A diferencia de los módulos de DRAM externa y transistor Basado en SRAM normalmente se utiliza para caches.
Incorporación de permisos mucho más amplia autobuses y mayores velocidades de operación, y debido a la densidad mucho más alta de memorias DRAM en comparación con SRAM, mayores cantidades de memoria potencialmente pueden ser utilizados. Sin embargo, la diferencia en los procesos de fabricación que la integración en el chip difícil, por lo que varios han muere a envasar en un chip, elevando los costos. Los últimos acontecimientos superar esta limitación mediante el uso de estándares CMOS proceso para la fabricación de EDRAM, como en 1T-SRAM.
eDRAM se utiliza en IBM Power7 procesador[1] y en muchos consolas de juegos, Incluido el PlayStation 2, PlayStation Portable, Nintendo GameCube, Wii, Zune HD, iPhone, Y Xbox 360.
ESDRAM
Este tipo de memoria es apoyado por ALPHA, que piensa utilizarla en sus futuros sistemas. Funciona a 133MHz y alcanza transferencias de hasta 1,6 GB/s, puediendo llegar a alcanzar en modo doble, con una velocidad de 150MHz hast 3,2 GB/s. El problema es el mismo que el de las dos anteriores, la falta de apoyo, y en este caso agravado por el apoyo minoritario de ALPHA, VLSI, IBM y DIGITAL.
VRAM
Video Random Access Memory (VRAM) es un tipo de memoria RAM que utiliza el controlador gráfico para poder manejar toda la información visual que le manda la CPU del sistema. La principal característica de esta clase de memoria es que es accesible de forma simultánea por dos dispositivos. De esta manera, es posible que la CPU grabe información en ella, mientras se leen los datos que serán visualizados en el monitor en cada momento. Por esta razón también se clasifica como Dual-Ported.
En un principio (procesadores de 8 bits) se llamaba así a la memoria sólo accesible directamente por el procesador gráfico, debiendo la CPU cargar los datos a través de él. Podía darse el caso de equipos con más memoria VRAM que RAM (como algunos modelos japoneses de MSX2, que contaban con 64 KB de RAM y 128 KB de VRAM).
SGRAM
Es un tipo especializado de SDRAM para adaptadores gráficos. Agrega mejoras como bit masking (escribir en un bit específico sin afectar a otros) y block write (rellenar un bloque de memoria con un único color). A diferencia de la VRAM y la WRAM, SGRAM es de un solo puerto. De todas maneras, puede abrir dos páginas de memoria como una, simulando el doble puerto que utilizan otras tecnologías RAM.
Tiene mejores características que las FPM, EDO, VRAM, WRAM y SDRAM.
Las SGRAM y las SDRAM se volvieron los tipos de DRAM más populares a finales de los 90 y principios del año 2000.
SORIMM
El SORIMM es un subsistema de memoria de uso general y de alto rendimiento, aplicable para un amplio rango de aplicaciónes incluyendo memoria de computadoras, computadoras móviles "delgadas y livianas", sistemas de redes y otras aplicaciones donde se requiera anchura de banda alta y baja latencia.
Características Principales
Módulo SORIMM
• SORIMM de 160-pines.
• Frecuencia de operación de 600 / 700 / 800 Mhz.
• Voltaje de operación de 2.5V.
• Cada RDRAM tiene 32 bancos, para un total de 512, 384, 256, 192, 128 ó 128 bancos en cada módulo de 256MB, 192MB, 128MB, 96MB ó 64MB, respectivamente.
• Condiciones de baja energía y regeneración automática de consumo bajo.
• Soporta al SPD (Detección de Presencia en Serie).
• Conductores comunes separados RAS y CAS para una mayor eficiencia
Los chips de memoria son pequeños rectángulos negros que suelen ir soldados en grupos a unas plaquitas con "pines" o contactos. La diferencia entre la RAM y otros tipos de memoria de almacenamiento, como los disquetes o los discos duros, es que la RAM es muchísimo más rápida, y que se borra al apagar el ordenador, no como éstos.
El interior de cada chip se puede imaginar como una matriz o tabla en la cual cada celda es capaz de almacenar un bit. Por tanto, un bit se puede localizar directamente proporcionando una fila y una columna de la tabla. En realidad, la CPU identifica cada celda mediante un número, denominado dirección de memoria. A partir de una dirección se calcula cuál es la fila y columna correspondiente, con lo que ya se puede acceder a la celda deseada. El acceso se realiza en dos pasos: primero se comunica la fila y después la columna empleando los mismos terminales de conexión. Obviamente, esta técnica –denominada multiplexado– permite emplear menos terminales de conexión para acceder a la RAM, lo que optimiza la relación entre el tamaño del chip y la capacidad de almacenamiento.
La memoria de acceso aleatorio es la memoria desde donde el procesador recibe las instrucciones y guarda los resultados. Es el área de trabajo para la mayor parte del software de un computador.1Existe una memoria intermedia entre el procesador y la RAM, llamada cache, pero ésta sólo es una copia (de acceso rápido) de la memoria principal (típicamente discos duros) almacenada en los módulos de RAM.
MODULOS SIMM: Formato usado en computadores antiguos. Tenían un bus de datos de 16 o 32 bits
MODULOS DIMM: Usado en computadores de escritorio. Se caracterizan por tener un bus de datos de 64 bits.
MODULOS SO-DIMM: Usado en computadores portátiles. Formato miniaturizado de DIMM.
SO-DIMM y MicroDIMM.
Son formatos de memoria patra Laptops. Los sub Notebooks emplean MicroDIMM.
Existen versiones de RamBus llamadas SORIMM.
DRAM
Es un tipo de memoria dinamica de [[acceso aleatorio que se usa principalmente en los módulos de memoria RAM y en otros dispositivos, como memoria principal del sistema. Se denomina dinámica, ya que para mantener almacenado un dato, se requiere revisar el mismo y recargarlo, cada cierto período, en un ciclo de refresco. Su principal ventaja es la posibilidad de construir memorias con una gran densidad de posiciones y que todavía funcionen a una velocidad alta: en la actualidad se fabrican integrados con millones de posiciones y velocidades de acceso medidos en millones de bit por segundo. Es una memoria volátil, es decir cuando no hay alimentación eléctrica, la memoria no guarda la información. Inventada a finales de los sesenta, es una de las memorias más usadas en la actualidad.
Para 1973 Intel y otros fabricantes construían y empacaban sus integrados de memoria DRAM empleando un esquema en el que se aumentaba un pin por cada vez que se doblaba la capacidad. De acuerdo a este esquema, un integrado de 64 kilobits tendría 16 pines solo para las direcciones. Dentro de los costos más importantes para el fabricante y el ensamblador de circuitos impresos estaba la cantidad de pines del empaque y en un mercado tan competido era crucial tener los menores precios. Debido a eso, un integrado con una capacidad de 16 pines y 4Kb de capacidad fue un producto apreciado por los usuarios, que encontraban a los integrados de 22 pines, ofrecidos por Intel y Texas Instruments como insumos costosos.
FUNCIONAMIENTO
La celda de memoria es la unidad básica de cualquier memoria, capaz de almacenar un Bit en los sistemas digitales. La construcción de la celda define el funcionamiento de la misma, en el caso de la DRAM moderna, consiste en un transistor de efecto de campo y un condensador. El principio de funcionamiento básico, es sencillo: una carga se almacena en el condensador significando un 1 y sin carga un 0. El transistor funciona como un interruptor que conecta y desconecta al condensador. Este mecanismo puede implementarse con dispositivos discretos y de hecho muchas memorias anteriores a la época de los semiconductores, se basaban en arreglos de celdas transistor-condensador.
Las celdas en cualquier sistema de memoria, se organizan en la forma de matrices de dos dimensiones, a las cuales se accede por medio de las filas y las columnas. En la DRAM estas estructuras contienen millones de celdas y se fabrican sobre la superficie de la pastilla de silicio formando áreas que son visibles a simple vista. En el ejemplo tenemos un arreglo de 4x4 celdas, en el cual las líneas horizontales conectadas a las compuertas de los transistores son las llamadas filas y las líneas verticales conectadas a los canales de los FET son las columnas.
Para acceder a una posición de memoria se necesita una dirección de 4 bits, pero en las DRAM las direcciones están multiplexadas en tiempo, es decir se envían por mitades. Las entradas marcadas como a0 y a1 son el bus de direcciones y por el mismo entra la dirección de la fila y después la de la columna. Las direcciones se diferencian por medio de señales de sincronización llamadas RAS (del inglés Row Address Strobe) y CAS (Column Address Strobe) que indican la entrada de cada parte de la dirección.
EDO-RAM (Extended Data Output RAM)
Lanzada en 1995 y con tiempos de accesos de 40 o 30ns suponía una mejora sobre su antecesora la FPM. La EDO, también es capaz de enviar direcciones contiguas pero direcciona la columna que va utilizar mientras que se lee la información de la columna anterior, dando como resultado una eliminación de estados de espera, manteniendo activo el buffer de salida hasta que comienza el próximo ciclo de lectura.
BEDO-RAM (Burst Extended Data Output RAM)
Fue la evolución de la EDO RAM y competidora de la SDRAM, fue presentada en 1997. Era un tipo de memoria que usaba generadores internos de direcciones y accedía a mas de una posición de memoria en cada ciclo de reloj, de manera que lograba un desempeño un 50% mejor que la EDO. Nunca salió al mercado, dado que Intel y otros fabricantes se decidieron por esquemas de memoria sincrónicos que si bien tenían mucho del direccionamiento MOSTEK, agregan funcionalidades distintas como señales de reloj.
SDRAM
Es una memoria dinámica de acceso aleatorio (DRAM) que tiene una interfaz síncrona. Tradicionalmente, la memoria dinámica de acceso aleatorio (DRAM) tiene una interfaz asíncrona, lo que significa que el cambio de estado de la memoria tarda un cierto tiempo, dado por las características de la memoria, desde que cambian sus entradas. En cambio, en las SDRAM el cambio de estado tiene lugar en el momento señalado por una señal de reloj y, por lo tanto, está sincronizada con el bus de sistema del ordenador. El reloj también permite controlar una máquina de estados finitos interna que controla la función de "pipeline" (segmentación) de las instrucciones de entrada. Esto permite que el chip tenga un patrón de operación más complejo que la DRAM asíncrona, que no tiene una interfaz de sincronización
Las SDRAM son ampliamente utilizadas en los ordenadores, desde la original SDRAM y las posteriores DDR (o DDR1), DDR2 y DDR3. Actualmente se está diseñando la DDR4 y se prevé que estará disponible en 2012.
La latencia SDRAM no es intrínsecamente inferior (más rápido) que la DRAM asincrónica. De hecho, SDRAM temprana fue algo más lenta que estalló contemporáneas EDO DRAM debido a la lógica adicional. Los beneficios de la memoria intermedia interna SDRAM provienen de su capacidad para las operaciones de intercalar a los bancos múltiples de la memoria, lo que aumenta el ancho de banda efectivo.
Hoy en día, prácticamente todas las SDRAM se fabrica de acuerdo con las normas establecidas por la JEDEC, una asociación de la industria electrónica que adopta los estándares abiertos para facilitar la interoperabilidad de los componentes electrónicos. JEDEC ha adoptado formalmente su SDRAM estándar primero en 1993 y posteriormente aprobado normas SDRAM, incluyendo los de DDR, DDR2 y DDR3 SDRAM.
SDR SDRAM
Originalmente conocido simplemente como SDRAM, SDRAM tipo de datos solo puede aceptar un comando y la transferencia de una palabra de datos por ciclo de reloj. Las frecuencias de reloj típicas son 100 y 133 MHz. Chips están hechos con una variedad de tamaños de bus de datos (el más común 4, 8 ó 16 bits), pero los chips son generalmente montados en módulos DIMMs de 168-pines que leen o escriben 64 (non-ECC) o 72 (ECC) de bits a la vez.
El uso del bus de datos es complejo y requiere un controlador de memoria DRAM complejo. Esto es porque los datos escritos en la memoria DRAM deben ser presentadas en el mismo ciclo que escribir un comando, pero lee producir una salida de 2 o 3 ciclos después de que el comando de lectura. El controlador de memoria DRAM debe asegurarse de que el bus de datos nunca se requiere de una escritura y lectura, al mismo tiempo.
Típico SDRAM SDR velocidades de reloj de 66, 100 y 133 MHz (períodos de 15, 10, y el 7,5 ns). Frecuencias de reloj de hasta 150 MHz estaban disponibles para los entusiastas del rendimiento.
DDR-SDRAM
son del mismo tamaño que los DIMM de SDRAM, pero con más conectores: 184 pines en lugar de los 168 de la SDRAM normal.
Además, para que no exista confusión posible a la hora de instalarlos (lo cual tendría consecuencias sumamente desagradables), los DDR tienen 1 única muesca en lugar de las 2 de los DIMM "clásicos".
Evidentemente, resulta una lástima, pero tampoco podemos culpar a los fabricantes: los nuevos pines son absolutamente necesarios para implementar el sistema DDR, por no hablar de que se utiliza un voltaje distinto y que, sencillamente, tampoco nos serviría de nada poder instalarlos, porque necesitaríamos un chipset
RDRAM
es un tipo de memoria síncrona, conocida como Rambus DRAM. Éste es un tipo de memoria de siguiente generación a la DRAM en la que se ha rediseñado la DRAM desde la base pensando en cómo se debería integrar en un sistema.
El modo de funcionar de estas memorias es diferente a las DRAM, cambios producidos en una serie de decisiones de diseño que no buscan solo proporcionar un alto ancho de banda, sino que también solucionan los problemas de granularidad y número de pins. Este tipo de memoria se utilizó en el sistema de videojuegos Nintendo 64 de Nintendo y otros aparatos de posterior salida.
Características RDRAM
Una de las características más destacable dentro de las RDRAM es que su ancho de palabra es de tan sólo 16 bits comparado con los 64 a los que trabajan las SDRAM, y también trabaja a una velocidad mucho mayor, llegando hasta los 400Mhz. Al trabajar en flancos positivos y negativos, se puede decir que puede alcanzar unos 800 MHz virtuales o equivalentes; este conjunto le da un amplio ancho de banda. Por eso, a pesar de diseñarse como alternativa a la SDR SDRAM, se convirtió en competidora de la DDR SDRAM.
SLDRAM
es una DRAM fruto de un desarrollo conjunto y, en cuanto a la velocidad, puede
representar la competencia más cercana de Rambus. Su desarrollo se lleva a cabo por un grupo de 12 compañías
fabricantes de memoria. La SLDRAM es una extensión más rápida y mejorada de la arquitectura SDRAM que amplía el
actual diseño de 4 bancos a 16 bancos. El ancho de banda de SLDRAM es de los más altos 3.2GB/s y su costo no
seria tan elevado.
FPM DRAM
Memoria en modo paginado, el diseñomás comun de chips de RAM dinámica. El acceso a los bits de memoria se realiza por medio de coordenadas, fila y columna. Antes del modo paginado, era leido pulsando la fila y la columna de las líneas seleccionadas. Con el modo pagina, la fila se selecciona solo una vez para todas las columnas (bits) dentro de la fila, dando como resultado un rápido acceso. La memoria en modo paginado tambien es llamada memoria de modo Fast Page o memoria FPM, FPM RAM, FPM DRAM. El término "fast" fué añadido cuando los más nuevos chips empezaron a correr a 100 nanoseconds e incluso más.
SRAM
O Memoria Estática de Acceso Aleatorio es un tipo de memoria basada en semiconductores que, a diferencia de la memoria DRAM, es capaz de mantener los datos (mientras esté alimentada) sin necesidad de circuito de refresco (no se descargan). Sin embargo, sí son memorias volátiles, es decir que pierden la información si se les interrumpe la alimentación eléctrica.
CARACTERISTICAS
La memoria SRAM es más cara, pero más rápida y con un menor consumo (especialmente en reposo) que la memoria DRAM. Es utilizada, por tanto, cuando es necesario disponer de un mejor tiempo de acceso, o un consumo reducido, o ambos. Debido a su compleja estructura interna, es menos densa que DRAM, y por lo tanto no es utilizada cuando es necesaria una alta capacidad de datos, como por ejemplo en la memoria principal de los ordenadores personales.
Frecuencia de reloj y potencia
El consumo electrico de una SRAM varía dependiendo de la frencuencia con la cual se accede a la misma: puede llegar a tener un consumo similar a DRAM cuando es usada en alta frecuencia, y algunos circuitos integrados pueden consumir varios vatios durante su funcionamiento. Por otra parte, las SRAM utilizadas con una frecuencia baja, tienen un consumo muy bajo, del orden de micro-vatios.
TIPOS DE SRAM
SRAM no volátiles
Las SRAM no volatines presentan un funcionamiento estándar SRAM, con la salvedad de que guardan los datos cuando se interrumpe la alimentación electrica, salvaguardando información crítica. Se utilizan en situaciones donde la conservación de los datos es crucial y el uso de baterías no es posible.6
SRAM asíncrona
Las SRAM asíncronas están disponibles en tamaños desde 4Kb hasta 32Mb.7 Con un tiempo rápido de acceso, son adecuadas para el uso en equipos de comunicaciones, como switches, routers, teléfonos IP, tarjetas DSLAM, y en electrónica de automoción.
SRAM asíncrona
Las SRAM asíncronas están disponibles en tamaños desde 4Kb hasta 32Mb.7 Con un tiempo rápido de acceso, son adecuadas para el uso en equipos de comunicaciones, como switches, routers, teléfonos IP, tarjetas DSLAM, y en electrónica de automoción.
EDRAM
significa "incrustado DRAM", Un condensador Basado en memoria dinámica de acceso aleatorio generalmente integrados en el mismo morir o en el mismo paquete como el principal ASIC o procesador, A diferencia de los módulos de DRAM externa y transistor Basado en SRAM normalmente se utiliza para caches.
Incorporación de permisos mucho más amplia autobuses y mayores velocidades de operación, y debido a la densidad mucho más alta de memorias DRAM en comparación con SRAM, mayores cantidades de memoria potencialmente pueden ser utilizados. Sin embargo, la diferencia en los procesos de fabricación que la integración en el chip difícil, por lo que varios han muere a envasar en un chip, elevando los costos. Los últimos acontecimientos superar esta limitación mediante el uso de estándares CMOS proceso para la fabricación de EDRAM, como en 1T-SRAM.
eDRAM se utiliza en IBM Power7 procesador[1] y en muchos consolas de juegos, Incluido el PlayStation 2, PlayStation Portable, Nintendo GameCube, Wii, Zune HD, iPhone, Y Xbox 360.
ESDRAM
Este tipo de memoria es apoyado por ALPHA, que piensa utilizarla en sus futuros sistemas. Funciona a 133MHz y alcanza transferencias de hasta 1,6 GB/s, puediendo llegar a alcanzar en modo doble, con una velocidad de 150MHz hast 3,2 GB/s. El problema es el mismo que el de las dos anteriores, la falta de apoyo, y en este caso agravado por el apoyo minoritario de ALPHA, VLSI, IBM y DIGITAL.
VRAM
Video Random Access Memory (VRAM) es un tipo de memoria RAM que utiliza el controlador gráfico para poder manejar toda la información visual que le manda la CPU del sistema. La principal característica de esta clase de memoria es que es accesible de forma simultánea por dos dispositivos. De esta manera, es posible que la CPU grabe información en ella, mientras se leen los datos que serán visualizados en el monitor en cada momento. Por esta razón también se clasifica como Dual-Ported.
En un principio (procesadores de 8 bits) se llamaba así a la memoria sólo accesible directamente por el procesador gráfico, debiendo la CPU cargar los datos a través de él. Podía darse el caso de equipos con más memoria VRAM que RAM (como algunos modelos japoneses de MSX2, que contaban con 64 KB de RAM y 128 KB de VRAM).
SGRAM
Es un tipo especializado de SDRAM para adaptadores gráficos. Agrega mejoras como bit masking (escribir en un bit específico sin afectar a otros) y block write (rellenar un bloque de memoria con un único color). A diferencia de la VRAM y la WRAM, SGRAM es de un solo puerto. De todas maneras, puede abrir dos páginas de memoria como una, simulando el doble puerto que utilizan otras tecnologías RAM.
Tiene mejores características que las FPM, EDO, VRAM, WRAM y SDRAM.
Las SGRAM y las SDRAM se volvieron los tipos de DRAM más populares a finales de los 90 y principios del año 2000.
SORIMM
El SORIMM es un subsistema de memoria de uso general y de alto rendimiento, aplicable para un amplio rango de aplicaciónes incluyendo memoria de computadoras, computadoras móviles "delgadas y livianas", sistemas de redes y otras aplicaciones donde se requiera anchura de banda alta y baja latencia.
Características Principales
Módulo SORIMM
• SORIMM de 160-pines.
• Frecuencia de operación de 600 / 700 / 800 Mhz.
• Voltaje de operación de 2.5V.
• Cada RDRAM tiene 32 bancos, para un total de 512, 384, 256, 192, 128 ó 128 bancos en cada módulo de 256MB, 192MB, 128MB, 96MB ó 64MB, respectivamente.
• Condiciones de baja energía y regeneración automática de consumo bajo.
• Soporta al SPD (Detección de Presencia en Serie).
• Conductores comunes separados RAS y CAS para una mayor eficiencia
Los chips de memoria son pequeños rectángulos negros que suelen ir soldados en grupos a unas plaquitas con "pines" o contactos. La diferencia entre la RAM y otros tipos de memoria de almacenamiento, como los disquetes o los discos duros, es que la RAM es muchísimo más rápida, y que se borra al apagar el ordenador, no como éstos.
El interior de cada chip se puede imaginar como una matriz o tabla en la cual cada celda es capaz de almacenar un bit. Por tanto, un bit se puede localizar directamente proporcionando una fila y una columna de la tabla. En realidad, la CPU identifica cada celda mediante un número, denominado dirección de memoria. A partir de una dirección se calcula cuál es la fila y columna correspondiente, con lo que ya se puede acceder a la celda deseada. El acceso se realiza en dos pasos: primero se comunica la fila y después la columna empleando los mismos terminales de conexión. Obviamente, esta técnica –denominada multiplexado– permite emplear menos terminales de conexión para acceder a la RAM, lo que optimiza la relación entre el tamaño del chip y la capacidad de almacenamiento.
Suscribirse a:
Entradas (Atom)